Unknown

Dataset Information

0

Dissecting Listeria monocytogenes Persistent Contamination in a Retail Market Using Whole-Genome Sequencing.


ABSTRACT: Listeria monocytogenes is a foodborne pathogen that can cause invasive disease with high mortality in immunocompromised individuals and can survive in a variety of food-associated environments for a long time. L. monocytogenes clonal complex (CC) 87 is composed of ST87 and three other STs and has been identified as the most common subgroup associated with both foods and human clinical infections in China. Therefore, the persistence of CC87 L. monocytogenes in food-associated environments poses a significant concern for food safety. In this study, 83 draft genomes of CC87 L. monocytogenes, including 60 newly sequenced genomes, were analyzed with all isolates from our previous surveillance in Zigong, Sichuang, China. Sixty-eight of the studied isolates were isolated from one retail market (M1 market), while the others were from seven other markets (M2-M8 markets) in the same city. Whole-genome multilocus sequence typing (wg-MLST) and the whole-genome single nucleotide polymorphism (wg-SNP) analysis were performed. Three persistent contamination routes were identified in the M1 market, caused by 2 clusters (A and B) and a wgST31 type. Cluster A isolates were associated with the persistent contamination in a raw meat stall (M1-S77), while Cluster B isolates caused a persistent contamination in aquatic foods stalls. Five wgST31 isolates caused persistent contamination in a single aquatic stall (M1-S65). A pLM1686-like plasmid was found in all Cluster A isolates. A novel plasmid, pLM1692, a truncated pLM1686 plasmid without the cadmium, and other heavy metal resistance genes were conserved in all wgST31 isolates. By comparing persistent and putative non-persistent isolates, four genes that were all located in the prophage comK might be associated with persistence. These findings enhanced our understanding of the underlying mechanisms of contamination and assist in formulating targeted strategies for the prevention and control of L. monocytogenes transmission from the food processing chain to humans. IMPORTANCE Contamination of food by Listeria monocytogenes at retail level leads to potential consumption of contaminated food with high risk of human infection. Our previous study found persistent contamination of CC87 L. monocytogenes from a retail market in China through pulsed-field gel electrophoresis and multilocus sequence typing. In this study, whole-genome sequencing was used to obtain the highest resolution inference of the source and reasons for persistent contamination; meat grinders and minced meat were the major reservoir of persistent contamination in meat stalls, whereas fishponds were the major reservoir in seafood stalls, with different L. monocytogenes isolates involved. These isolates carried different properties such as plasmids and prophages, which may have contributed to their ability to survive or adapt to the different environments. Our findings suggest that whole-genome sequencing will be an effective surveillance tool to detect persistent L. monocytogenes contamination in retail food markets and to design new control strategies to improve food safety.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC9241689 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4551262 | biostudies-literature
| S-EPMC7644123 | biostudies-literature
| S-EPMC4733179 | biostudies-literature
| S-EPMC6779813 | biostudies-literature
| S-EPMC4982169 | biostudies-other
| S-EPMC5986919 | biostudies-literature
2021-06-11 | GSE176617 | GEO
| S-EPMC7698238 | biostudies-literature
| S-EPMC4395065 | biostudies-literature
| S-EPMC2869148 | biostudies-literature