No Genus-Specific Gene Is Essential for the Replication of Fowl Adenovirus 4 in Chicken LMH Cells.
Ontology highlight
ABSTRACT: Essential genus-specific genes have not been discovered for fowl adenovirus (FAdV), which hampers the development of FAdV-based vectors and attenuated FAdV vaccines. Reverse genetics approaches were employed to construct FAdV-4 mutants carrying deletions or frameshift mutations covering the whole left and right ends of the viral genome. The results of virus rescue and plaque forming experiments illustrated that all the 22 designated ORFs (open reading frames) were dispensable for the replication of FAdV-4 in chicken hepatoma Leghorn male hepatoma (LMH) cells and primary embryo hepatocytes. RNA-seq data demonstrated that ORF28 and ORF29 were not protein-encoding genes, and suggested a promoter (RP1) and an intron in these regions, respectively. The promoter activity of RP1 was further confirmed by reporter gene expression experiments. GAM-1-deleted FAdV-4 formed small plaques, while deletion of GAM-1 together with ORF22 resulted in even smaller ones in LMH cells. Simultaneous deletion of ORF28, ORF29, and GAM-1 led to growth defect of FAdV-4. These facts implied that genus-specific genes contributed to and synergistically affected viral replication, although no single one was essential. Notably, replication of FAdV-4 mutants could be different in vitro and in vivo. XGAM1-CX19A, a GAM-1-deleted FAdV-4 that replicated efficiently in LMH cells, did not kill chicken embryos because virus propagation took place at a very low level in vivo. This work laid a solid foundation for FAdV-4 vector construction as well as vaccine development, and would benefit viral gene function study. IMPORTANCE Identification of viral essential genes is important for adenoviral vector construction. Deletion of nonessential genes enlarges cloning capacity, deletion of essential genes makes a replication-defective vector, and expression of essential genes in trans generates a virus packaging cell line. However, the genus-specific essential genes in FAdV have not been identified. We constructed adenoviral plasmid carrying deletions covering all 22 genus-specific ORFs of FAdV-4, and found that all virus mutants could be rescued and amplified in chicken LMH cells except those that had defects in key promoter activity. These genus-specific genes affected virus growth, but no single one was indispensable. Dysfunction of several genus-specific genes at the same time could make FAdV-4 vectors replication-defective. In addition, the growth of FAdV-4 mutants could be different in LMH cells and in chicken embryos, suggesting the possibility of constructing attenuated FAdV-4 vaccines.
SUBMITTER: Liu X
PROVIDER: S-EPMC9241798 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA