Unknown

Dataset Information

0

3D/2D Heterojunction of CeO2/Ultrathin MXene Nanosheets for Photocatalytic Hydrogen Production.


ABSTRACT: Two-dimensional (2D) nanomaterials benefit from the high specific surface area, unique surface properties, and quantum size effects, which have attracted widespread scientific attention. MXenes add many members to the 2D material family, mainly metal conductors, most of which are dielectrics, semiconductors, or semimetals. With excellent electron mobility, beneficial to electron-hole separation, and large functional groups that can be tightly coupled with other materials, MXenes have broad application prospects in photocatalysis. Meanwhile, the application of CeO2-based materials in organic catalysis, photocatalytic water splitting, and photodegradation of organic pollutants has been extensively explored, and studies have found that CeO2-based materials show good photocatalytic performance. In view of this, we synthesized regular octahedral CeO2 with a homojunction in one step by a hydrothermal method and compounded it with ultrathin 2D material MXene, which exhibited fast carrier migration efficiency and a good interfacial effect, making the material show excellent photocatalytic activity. The results showed that the photocatalytic H2 evolution performance of the MXene/CeO2 heterojunction was significantly improved. In this study, a low-cost catalyst with high photocatalytic activity was prepared, presenting a new research idea for achieving a combined 3D/2D photocatalytic system.

SUBMITTER: Zhu H 

PROVIDER: S-EPMC9245096 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7145887 | biostudies-literature
| S-EPMC7558859 | biostudies-literature
| S-EPMC6247023 | biostudies-literature
| S-EPMC8397249 | biostudies-literature