Project description:Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Project description:The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata.
Project description:BackgroundWastewater surveillance for SARS-CoV-2 is an emerging approach to help identify the risk of a COVID-19 outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, nursing homes) scales.ObjectivesThis research aims to understand the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation.MethodsThis paper presents the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resource needs, and lessons learned from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions.DiscussionOur analysis suggests that wastewater monitoring at colleges requires consideration of information needs, local sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
Project description:Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
Project description:Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients. Lessons learned from this WBS program address the variability of water quality, new detection technologies, the range of detectable viral loads in wastewater, and the predictive value of integrating environmental and human surveillance data. Data from our WBS program indicated that water quality was statistically different between sewer sampling sites, with more variability observed in wastewater coming from individual buildings compared to clusters of buildings. A new detection technology was developed based upon the use of a novel polymerase called V2G. Detectable levels of SARS-CoV-2 in wastewater varied from 102 to 106 genomic copies (gc) per liter of raw wastewater (L). Integration of environmental and human surveillance data indicate that WBS detection of 100 gc/L of SARS-CoV-2 RNA in wastewater was associated with a positivity rate of 4% as detected by human surveillance in the wastewater catchment area, though confidence intervals were wide (β ~ 8.99 ∗ ln(100); 95% CI = 0.90-17.08; p < 0.05). Our data also suggest that early detection of COVID-19 surges based on correlations between viral load in wastewater and human disease incidence could benefit by increasing the wastewater sample collection frequency from weekly to daily. Coupling simpler and faster detection technology with more frequent sampling has the potential to improve the predictive potential of using WBS of SARS-CoV-2 for early detection of the onset of COVID-19.
Project description:Wastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study presents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples). This spans five major SARS-CoV-2 waves, where WBE data provided early warning signals for each wave. Further, the measured SARS-CoV-2 content in the wastewater correlated significantly with the level of positive COVID-19 tests (r = 0.86; p << 0.0001) measured by widespread testing of the population. Moreover, as a proof-of-concept, six SARS-CoV-2 variants of concern were monitored using hpPCR assay, demonstrating that variants can be traced through wastewater monitoring. During this long-term surveillance, two sampling protocols, two RNA concentration/extraction methods, two calculation approaches, and normalization to the RNA virus Pepper mild mottle virus (PMMoV) were evaluated. In addition, a study of storage conditions was performed, demonstrating that the decay of viral RNA was significantly reduced upon the addition of glycerol to the wastewater before storage at -80 °C. Our results provide valuable information that can facilitate the incorporation of WBE as a prediction tool for possible future outbreaks of SARS-CoV-2 and preparations for future pandemics.
Project description:During the COVID-19 pandemic, wastewater-based epidemiology (WBE) and clinical surveillance have been used as tools for analyzing the circulation of SARS-CoV-2 in the community, but both approaches can be strongly influenced by some sources of variability. From the challenging perspective of integrating environmental and clinical data, we performed a correlation analysis between SARS-CoV-2 concentrations in raw sewage and incident COVID-19 cases in areas served by medium-size wastewater treatment plants (WWTPs) from 2021 to 2023. To this aim, both datasets were adjusted for several sources of variability: WBE data were adjusted for factors including the analytical protocol, sewage flow, and population size, while clinical data adjustments considered the demographic composition of the served population. Then, we addressed the impact on the correlation of differences among sewerage networks and variations in the frequency and type of swab tests due to changes in political and regulatory scenarios. Wastewater and clinical data were significantly correlated when restrictive containment measures and limited movements were in effect (ρ = 0.50) and when COVID-19 cases were confirmed exclusively through molecular testing (ρ = 0.49). Moreover, a positive (although weak) correlation arose for WWTPs located in densely populated areas (ρ = 0.37) and with shorter sewerage lengths (ρ = 0.28). This study provides methodological approaches for interpreting WBE and clinical surveillance data, which could also be useful for other infections. Data adjustments and evaluation of possible sources of bias need to be carefully considered from the perspective of integrated environmental and clinical surveillance of infections.
Project description:Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.
Project description:Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.