Project description:BackgroundAutism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. The common variants of specific oxytocin-related genes (OTRGs), particularly OXTR, are associated with the aetiology of ASD. The contribution of rare genetic variations in OTRGs to ASD aetiology remains unclear.MethodsWe catalogued publicly available de novo mutations (DNMs) [from 6,511 patients with ASD and 3,391 controls], rare inherited variants (RIVs) [from 1,786 patients with ASD and 1,786 controls], and both de novo copy number variations (dnCNVs) and inherited CNVs (ihCNVs) [from 15,581 patients with ASD and 6,017 controls] in 963 curated OTRGs to explore their contribution to ASD pathology, respectively. Finally, a combined model was designed to prioritise the contribution of each gene to ASD aetiology by integrating DNMs and CNVs.FindingsThe rare genetic variations of OTRGs were significantly associated with ASD aetiology, in the order of dnCNVs > ihCNVs > DNMs. Furthermore, 172 OTRGs and their connected 286 ASD core genes were prioritised to positively contribute to ASD aetiology, including top-ranked MAPK3. Probands carrying rare disruptive variations in these genes were estimated to account for 10∼11% of all ASD probands.InterpretationOur findings suggest that rare disruptive variations in 172 OTRGs and their connected 286 ASD core genes are associated with ASD aetiology and may be potential biomarkers predicting the effects of oxytocin treatment.FundingGuangdong Key Project, National Natural Science Foundation of China, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
Project description:Rare genetic variations contribute to the heterogeneity of autism spectrum disorder (ASD) and the responses to various interventions for ASD probands. However, the associated molecular underpinnings remain unclear. Herein, we estimated the association between rare genetic variations in 410 vitamin A (VA)-related genes (VARGs) and ASD aetiology using publicly available de novo mutations (DNMs), rare inherited variants, and copy number variations (CNVs) from about 50,000 ASD probands and 20,000 normal controls (discovery and validation cohorts). Additionally, given the functional relevance of VA and oxytocin, we systematically compared the similarities and differences between VA and oxytocin with respect to ASD aetiology and evaluated their potential for clinical applications. Functional DNMs and pathogenic CNVs in VARGs contributed to ASD pathogenesis in the discovery and validation cohorts. Additionally, 324 potential VA-related biomarkers were identified, 243 of which were shared with previously identified oxytocin-related biomarkers, while 81 were unique VA biomarkers. Moreover, multivariable logistic regression analysis revealed that both VA- and oxytocin-related biomarkers were able to predict ASD aetiology for individuals carrying functional DNM in corresponding biomarkers with an average precision of 0.94. As well as, convergent and divergent functions were also identified between VA- and oxytocin-related biomarkers. The findings of this study provide a basis for future studies aimed at understanding the pathophysiological mechanisms underlying ASD while also defining a set of potential molecular biomarkers for adjuvant diagnosis and intervention in ASD.
Project description:Autism spectrum disorder (ASD) is characterized by persistent deficits within two core symptom domains: social communication and restricted, repetitive behaviors. Although numerous studies have reported psychopharmacological treatment outcomes for the core symptom domains of ASD, there are not enough studies on fundamental treatments based on the etiological pathology of ASD. Studies on candidate medications related to the pathogenesis of ASD, such as naltrexone and secretin, were conducted, but the results were inconclusive. Oxytocin has been identified as having an important role in maternal behavior and attachment, and it has been recognized as a key factor in the social developmental deficit seen in ASD. Genetic studies have also identified associations between ASD and the oxytocin pathway. As ASD has its onset in infancy, parents are willing to try even experimental or unapproved treatments in an effort to avoid missing the critical period for diagnosis and treatment, which can place their child in an irreversible state. While therapeutic application of oxytocin for ASD is in its early stages, we have concluded that oxytocin would be a promising therapeutic substance via a thorough literature review focusing on the following: the relationship between oxytocin and sociality; single nucleotide polymorphisms as a biological marker of ASD; and validity verification of oxytocin treatment in humans. We also reviewed materials related to the mechanism of oxytocin action that may support its potential application in treating ASD.
Project description:BackgroundExperimental studies and small clinical trials have suggested that treatment with intranasal oxytocin may reduce social impairment in persons with autism spectrum disorder. Oxytocin has been administered in clinical practice to many children with autism spectrum disorder.MethodsWe conducted a 24-week, placebo-controlled phase 2 trial of intranasal oxytocin therapy in children and adolescents 3 to 17 years of age with autism spectrum disorder. Participants were randomly assigned in a 1:1 ratio, with stratification according to age and verbal fluency, to receive oxytocin or placebo, administered intranasally, with a total target dose of 48 international units daily. The primary outcome was the least-squares mean change from baseline on the Aberrant Behavior Checklist modified Social Withdrawal subscale (ABC-mSW), which includes 13 items (scores range from 0 to 39, with higher scores indicating less social interaction). Secondary outcomes included two additional measures of social function and an abbreviated measure of IQ.ResultsOf the 355 children and adolescents who underwent screening, 290 were enrolled. A total of 146 participants were assigned to the oxytocin group and 144 to the placebo group; 139 and 138 participants, respectively, completed both the baseline and at least one postbaseline ABC-mSW assessments and were included in the modified intention-to-treat analyses. The least-squares mean change from baseline in the ABC-mSW score (primary outcome) was -3.7 in the oxytocin group and -3.5 in the placebo group (least-squares mean difference, -0.2; 95% confidence interval, -1.5 to 1.0; P = 0.61). Secondary outcomes generally did not differ between the trial groups. The incidence and severity of adverse events were similar in the two groups.ConclusionsThis placebo-controlled trial of intranasal oxytocin therapy in children and adolescents with autism spectrum disorder showed no significant between-group differences in the least-squares mean change from baseline on measures of social or cognitive functioning over a period of 24 weeks. (Funded by the National Institute of Child Health and Human Development; SOARS-B ClinicalTrials.gov number, NCT01944046.).
Project description:Autism spectrum disorder (ASD), characterized by both impaired communication and social interaction, and by stereotypic behavior, affects about 1 in 68, predominantly males. The medico-economic burdens of ASD are enormous, and no recognized treatment targets the core features of ASD. In a placebo-controlled, double-blind, randomized trial, young men (aged 13-27) with moderate to severe ASD received the phytochemical sulforaphane (n = 29)--derived from broccoli sprout extracts--or indistinguishable placebo (n = 15). The effects on behavior of daily oral doses of sulforaphane (50-150 µmol) for 18 wk, followed by 4 wk without treatment, were quantified by three widely accepted behavioral measures completed by parents/caregivers and physicians: the Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and Clinical Global Impression Improvement Scale (CGI-I). Initial scores for ABC and SRS were closely matched for participants assigned to placebo and sulforaphane. After 18 wk, participants receiving placebo experienced minimal change (<3.3%), whereas those receiving sulforaphane showed substantial declines (improvement of behavior): 34% for ABC (P < 0.001, comparing treatments) and 17% for SRS scores (P = 0.017). On CGI-I, a significantly greater number of participants receiving sulforaphane had improvement in social interaction, abnormal behavior, and verbal communication (P = 0.015-0.007). Upon discontinuation of sulforaphane, total scores on all scales rose toward pretreatment levels. Dietary sulforaphane, of recognized low toxicity, was selected for its capacity to reverse abnormalities that have been associated with ASD, including oxidative stress and lower antioxidant capacity, depressed glutathione synthesis, reduced mitochondrial function and oxidative phosphorylation, increased lipid peroxidation, and neuroinflammmation.
Project description:ObjectivesAutism is a complicated neurodevelopmental disorder characterized by social interaction deficiencies, hyperactivity, anxiety, communication disorders, and a limited range of interests. The zebrafish (Danio rerio) is a social vertebrate used as a biomedical research model to understand social behavior mechanisms.Materials and methodsAfter spawning, the eggs were exposed to sodium valproate for 48 hr, after which the eggs were divided into eight groups. Except for the positive and control groups, there were six treatment groups based on oxytocin concentration (25, 50, and 100 μM) and time point (24 and 48 hr). Treatment was performed on days 6 and 7, examined by labeling oxytocin with fluorescein-5-isothiocyanate (FITC) and imaging with confocal microscopy and the expression levels of potential genes associated with the qPCR technique. Behavioral studies, including light-dark background preference test, shoaling behavior, mirror test, and social preference, were performed on 10, 11, 12, and 13 days post fertilization (dpf), respectively.ResultsThe results showed that the most significant effect of oxytocin was at the concentration of 50 μM and the time point of 48 hr. Increased expression of shank3a, shank3b, and oxytocin receptor genes was also significant at this oxytocin concentration. Light-dark background preference results showed that oxytocin in the concentration of 50 µM significantly increased the number of crosses between dark and light areas compared with valproic acid (positive group). Also, oxytocin showed an increase in the frequency and time of contact between the two larvae. We showed a decrease in the distance in the larval group and an increase in time spent at a distance of one centimeter from the mirror.ConclusionOur findings showed that the increased gene expression of shank3a, shank3b, and oxytocin receptors improved autistic behavior. Based on this study some indications showed that oxytocin administration in the larval stage could significantly improve the autism-like spectrum.
Project description:Pivotal response treatment (PRT) is an evidence-based behavioral intervention based on applied behavior analysis principles aimed to improve social communication skills in individuals with autism spectrum disorder (ASD). PRT adopts a more naturalistic approach and focuses on using a number of strategies to help increase children's motivation during intervention. Since its conceptualization, PRT has received much empirical support for eliciting therapeutic gains in greater use of functional social communication skills in individuals with ASD. Building upon the empirical evidence supporting PRT, recent advancements have increasingly turned to using interdisciplinary research integrating neuroimaging techniques and behavioral measures to help identify objective biomarkers of treatment, which have two primary purposes. First, neuroimaging results can help characterize how PRT may elicit change, and facilitate partitioning of the heterogeneous profiles of neural mechanisms underlying similar profile of behavioral changes observed over PRT. Second, neuroimaging provides an objective means to both map and track how biomarkers may serve as reliable and sensitive predictors of responder profiles to PRT, assisting clinicians to identify who will most likely benefit from PRT. Together, a better understanding of both mechanisms of change and predictors of responder profile will help PRT to serve as a more precise and targeted intervention for individuals with ASD, thus moving towards the goal of precision medicine and improving quality of care. This review focuses on the recent emerging neuroimaging evidences supporting PRT, offering current perspectives on the importance of interdisciplinary research to help clinicians better understand how PRT works and predict who will respond to PRT.
Project description:Intranasal oxytocin (OT) has been shown to improve social communication functioning of individuals with autism spectrum disorder (ASD) and, thus, has received considerable interest as a potential ASD therapeutic agent. Although preclinical research indicates that OT modulates the functional output of the mesocorticolimbic dopamine system that processes rewards, no clinical brain imaging study to date has examined the effects of OT on this system using a reward processing paradigm. To address this, we used an incentive delay task to examine the effects of a single dose of intranasal OT, versus placebo (PLC), on neural responses to social and nonsocial rewards in children with ASD.In this placebo-controlled double-blind study, 28 children and adolescents with ASD (age: M?=?13.43 years, SD?=?2.36) completed two fMRI scans, one after intranasal OT administration and one after PLC administration. During both scanning sessions, participants completed social and nonsocial incentive delay tasks. Task-based neural activation and connectivity were examined to assess the impact of OT relative to PLC on mesocorticolimbic brain responses to social and nonsocial reward anticipation and outcomes.Central analyses compared the OT and PLC conditions. During nonsocial reward anticipation, there was greater activation in the right nucleus accumbens (NAcc), left anterior cingulate cortex (ACC), bilateral orbital frontal cortex (OFC), left superior frontal cortex, and right frontal pole (FP) during the OT condition relative to PLC. Alternatively, during social reward anticipation and outcomes, there were no significant increases in brain activation during the OT condition relative to PLC. A Treatment Group × Reward Condition interaction revealed relatively greater activation in the right NAcc, right caudate nucleus, left ACC, and right OFC during nonsocial relative to social reward anticipation during the OT condition relative to PLC. Additionally, these analyses revealed greater activation during nonsocial reward outcomes during the OT condition relative to PLC in the right OFC and left FP. Finally, functional connectivity analyses generally revealed changes in frontostriatal connections during the OT condition relative to PLC in response to nonsocial, but not social, rewards.The effects of intranasal OT administration on mesocorticolimbic brain systems that process rewards in ASD were observable primarily during the processing of nonsocial incentive salience stimuli. These findings have implications for understanding the effects of OT on neural systems that process rewards, as well as for experimental trials of novel ASD treatments developed to ameliorate social communication impairments in ASD.
Project description:Since the documented observations of Kanner in 1943, there has been great debate about the diagnoses, the sub-types, and the diagnostic threshold that relates to what is now known as autism spectrum disorder (ASD). Reflecting this complicated history, there has been continual refinement from DSM-III with 'Infantile Autism' to the current DSM-V diagnosis. The disorder is now widely accepted as a complex, pervasive, heterogeneous condition with multiple etiologies, sub-types, and developmental trajectories. Diagnosis remains based on observation of atypical behaviors, with criteria of persistent deficits in social communication and restricted and repetitive patterns of behavior. This review provides a broad overview of the history, prevalence, etiology, clinical presentation, and heterogeneity of ASD. Factors contributing to heterogeneity, including genetic variability, comorbidity, and gender are reviewed. We then explore current evidence-based pharmacological and behavioral treatments for ASD and highlight the complexities of conducting clinical trials that evaluate therapeutic efficacy in ASD populations. Finally, we discuss the potential of a new wave of research examining objective biomarkers to facilitate the evaluation of sub-typing, diagnosis, and treatment response in ASD.