Project description:PurposeWe sought to develop diagnostic models incorporating mpMRI examination to identify PCa (Gleason score≥3+3) and CSPCa (Gleason score≥3+4) to reduce overdiagnosis and overtreatment.MethodsWe retrospectively identified 784 patients according to inclusion criteria between 2016 and 2020. The cohort was split into a training cohort of 548 (70%) patients and a validation cohort of 236 (30%) patients. Age, PSA derivatives, prostate volume, and mpMRI parameters were assessed as predictors for PCa and CSPCa. The multivariable models based on clinical parameters were evaluated using area under the curve (AUC), calibration plots, and decision curve analysis (DCA).ResultsUnivariate analysis showed that age, tPSA, PSAD, prostate volume, MRI-PCa, MRI-seminal vesicle invasion, and MRI-lymph node invasion were significant predictors for both PCa and CSPCa (each p≤0.001). PSAD has the highest diagnostic accuracy in predicting PCa (AUC=0.79) and CSPCa (AUC=0.79). The multivariable models for PCa (AUC=0.92, 95% CI: 0.88-0.96) and CSPCa (AUC=0.95, 95% CI: 0.92-0.97) were significantly higher than the combination of derivatives for PSA (p=0.041 and 0.009 for PCa and CSPCa, respectively) or mpMRI (each p<0.001) in diagnostic accuracy. And the multivariable models for PCa and CSPCa illustrated better calibration and substantial improvement in DCA at threshold above 10%, compared with PSA or mpMRI derivatives. The PCa model with a 30% cutoff or CSPCa model with a 20% cutoff could spare the number of biopsies by 53%, and avoid the number of benign biopsies over 80%, while keeping a 95% sensitivity for detecting CSPCa.ConclusionOur multivariable models could reduce unnecessary biopsy without comprising the ability to diagnose CSPCa. Further prospective validation is required.
Project description:Take Home Message In biopsy-naïve patients suspected for prostate cancer, we propose that in case of nonsuspicious multiparametric magnetic resonance imaging (mpMRI), one could abstain from systematic biopsies after careful shared decision-making. Systematic biopsies add a substantial number of clinically significant prostate cancer cases and should not be omitted in case of suspicious mpMRI. Background It remains uncertain whether transrectal ultrasound (TRUS)-guided systematic biopsies can be omitted and rely solely on multiparametric magnetic resonance imaging–targeted biopsies (MRI-TBx) in biopsy-naïve men suspected of prostate cancer (PCa). Objective To compare PCa detection in biopsy-naïve men between systematic biopsy and MRI-TBx. Design, setting, and participants A prospective cohort study was conducted in a Dutch teaching hospital. Consecutive patients with suspected PCa, no history of biopsy, and no clinical suspicion of metastasis underwent both TRUS-guided systematic biopsies and MRI-TBx by multiparametric magnetic resonance imaging (mpMRI)-ultrasound fusion, including sham biopsies in case of negative mpMRI. Outcome measurements and statistical analysis Clinically significant PCa (csPCa), defined as group ≥2 on the International Society of Urological Pathology grading, was detected. Results and limitations The overall prevalence of csPCa, irrespective of biopsy technique, was 37.4% (132/353) in our population. MRI-TBx were performed in 263/353 (74.5%) patients with suspicious mpMRI (Prostate Imaging Reporting and Data System [PI-RADS] ≥3). The detection rates for csPCa were 39.5% for MRI-TBx and 42.9% for systematic biopsies. The added values, defined as the additional percentages of patients with csPCa detected by adding one biopsy technique, were 8.7% for the systematic biopsies and 5.3% for MRI-TBx. In patients with nonsuspicious mpMRI, five cases (6%) of csPCa were found by systematic biopsies. Conclusions This study in biopsy-naïve patients suspected for PCa showed that systematic biopsies have added value to MRI-TBx alone in patients with mpMRI PI-RADS >2. Patient summary We studied magnetic resonance imaging (MRI)-guided prostate biopsy for diagnosing prostate cancer and compared it with the standard method of prostate biopsy. Standard systematic biopsies cannot be omitted in patients with suspicious MRI, as they add to the detection of significant prostate cancer.
Project description:PurposeThe underlying premise of prostate cancer active surveillance (AS) is that cancers likely to metastasize will be recognized and eliminated before cancer-related disease can ensue. Our study was designed to determine the prostate cancer upgrading rate when biopsy guided by magnetic resonance imaging (MRGBx) is used before entry and during AS.Materials and methodsThe cohort included 519 men with low- or intermediate-risk prostate cancer who enrolled in prospective studies (NCT00949819 and NCT00102544) between February 2008 and February 2020. Subjects were preliminarily diagnosed with Gleason Grade Group (GG) 1 cancer; AS began when subsequent MRGBx confirmed GG1 or GG2. Participants underwent confirmatory MRGBx (targeted and systematic) followed by surveillance MRGBx approximately every 12 to 24 months. The primary outcome was tumor upgrading to ≥GG3.ResultsUpgrading to ≥GG3 was found in 92 men after a median followup of 4.8 years (IQR 3.1-6.5) after confirmatory MRGBx. Upgrade-free probability after 5 years was 0.85 (95% CI 0.81-0.88). Cancer detected in a magnetic resonance imaging lesion at confirmatory MRGBx increased risk of subsequent upgrading during AS (HR 2.8; 95% CI 1.3-6.0), as did presence of GG2 (HR 2.9; 95% CI 1.1-8.2) In men who upgraded ≥GG3 during AS, upgrading was detected by targeted cores only in 27%, systematic cores only in 25% and both in 47%. In 63 men undergoing prostatectomy, upgrading from MRGBx was found in only 5 (8%).ConclusionsWhen AS begins and follows with MRGBx (targeted and systematic), upgrading rate (≥GG3) is greater when tumor is initially present within a magnetic resonance imaging lesion or when pathology is GG2 than when these features are absent.
Project description:PurposeThe purpose of this study is to explore the value of combining bpMRI and clinical indicators in the diagnosis of clinically significant prostate cancer (csPCa), and developing a prediction model and Nomogram to guide clinical decision-making.MethodsWe retrospectively analyzed 530 patients who underwent prostate biopsy due to elevated serum prostate specific antigen (PSA) levels and/or suspicious digital rectal examination (DRE). Enrolled patients were randomly assigned to the training group (n = 371, 70%) and validation group (n = 159, 30%). All patients underwent prostate bpMRI examination, and T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences were collected before biopsy and were scored, which were respectively named T2WI score and DWI score according to Prostate Imaging Reporting and Data System version 2 (PI-RADS v.2) scoring protocol, and then PI-RADS scoring was performed. We defined a new bpMRI-based parameter named Total score (Total score = T2WI score + DWI score). PI-RADS score and Total score were separately included in the multivariate analysis of the training group to determine independent predictors for csPCa and establish prediction models. Then, prediction models and clinical indicators were compared by analyzing the area under the curve (AUC) and decision curves. A Nomogram for predicting csPCa was established using data from the training group.ResultsIn the training group, 160 (43.1%) patients had prostate cancer (PCa), including 128 (34.5%) with csPCa. Multivariate regression analysis showed that the PI-RADS score, Total score, f/tPSA, and PSA density (PSAD) were independent predictors of csPCa. The prediction model that was defined by Total score, f/tPSA, and PSAD had the highest discriminatory power of csPCa (AUC = 0.931), and the diagnostic sensitivity and specificity were 85.1% and 87.5%, respectively. Decision curve analysis (DCA) showed that the prediction model achieved an optimal overall net benefit in both the training group and the validation group. In addition, the Nomogram predicted csPCa revealed good estimation when compared with clinical indicators.ConclusionThe prediction model and Nomogram based on bpMRI and clinical indicators exhibit a satisfactory predictive value and improved risk stratification for csPCa, which could be used for clinical biopsy decision-making.
Project description:We systematically reviewed the literature to determine whether Magnetic Resonance/Ultrasound (MR/US) fusion prostate biopsy is better than systematic biopsy for making a definitive diagnosis of prostate cancer. The two strategies were also compared for their ability to detect lesions with different degrees of suspicion on MRI and clinically significant prostate cancer, and the number of cores needed for diagnosis. The Cochrane Library, Embase, Web of Knowledge, and Medline were searched from inception until May 1, 2015. Meta-analysis was conducted via RevMan 5.2 software. Data was expressed as risk ratio (RR) and 95% confidence interval. Trial sequential analysis was used to assess risk of random errors. Fourteen trials were included, encompassing a total of 3105 participants. We found that MR/US fusion biopsy detected more prostate cancers than systematic biopsy (46.9% vs. 44.2%, p=0.03). In men with moderate/high MRI suspicion, MR/US fusion biopsy did better than systematic biopsy (RR = 1.46; p < 0.05) for making a diagnosis. Moreover, MR/US fusion biopsy detected more clinically significant cancers than systematic biopsy (RR = 1.19; p < 0.05). We recommend that MR/US fusion prostate biopsy be used to better detect prostate cancer, particularly in patients with moderate/high suspicion lesions on MRI.
Project description:Importance:Multiparametric magnetic resonance imaging (MRI) in conjunction with MRI-transrectal ultrasound (TRUS) fusion-guided biopsies have improved the detection of prostate cancer. It is unclear whether MRI itself adds additional value to multivariable prediction models based on clinical parameters. Objective:To determine whether an MRI-based prediction model can reduce unnecessary biopsies in patients with suspected prostate cancer. Design, Setting, and Participants:Patients underwent MRI, MRI-TRUS fusion-guided biopsy, and 12-core systematic biopsy in 1 session. The development cohort used to derive the prediction model consisted of 400 patients from 1 institution enrolled between May 14, 2015, and August 31, 2016, and the validation cohort included 251 patients from 2 independent institutions who underwent biopsies between April 1, 2013, and June 30, 2016, at 1 institution and between July 1, 2015, and October 31, 2016, at the other institution. The MRI model included MRI-derived parameters in addition to clinical variables. Area under the curve of receiver operating characteristic curves and decision curve analysis were performed. Main Outcomes and Measures:Risk of clinically significant prostate cancer on biopsy, defined as a Gleason score of 3?+?4 or higher in at least 1 biopsy core. Results:Overall, 193 (48.3%) of the 400 patients in the development cohort (mean [SD] age at biopsy, 64.3 [7.1] years) and 96 (38.2%) of the 251 patients in the validation cohort (mean [SD] age at biopsy, 64.9 [7.2] years) had clinically significant prostate cancer, defined as a Gleason score greater than or equal to 3?+?4. By applying the model to the external validation cohort, the area under the curve increased from 64% to 84% compared with the baseline model (P?<?.001). At a risk threshold of 20%, the MRI model had a lower false-positive rate than the baseline model (46% [95% CI, 32%-66%] vs 92% [95% CI, 70%-100%]), with only a small reduction in the true-positive rate (89% [95% CI, 85%-96%] vs 99% [95% CI, 89%-100%]). Eighteen of 100 fewer biopsies could have been performed, with no increase in the number of patients with missed clinically significant prostate cancers. Conclusions and Relevance:The inclusion of MRI-derived parameters in a risk model could reduce the number of unnecessary biopsies while maintaining a high rate of diagnosis of clinically significant prostate cancers.
Project description:PurposeWe explored the impact of magnetic resonance imaging-ultrasound fusion prostate biopsy on the prediction of final surgical pathology.Materials and methodsA total of 54 consecutive men undergoing radical prostatectomy at UCLA after fusion biopsy were included in this prospective, institutional review board approved pilot study. Using magnetic resonance imaging-ultrasound fusion, tissue was obtained from a 12-point systematic grid (mapping biopsy) and from regions of interest detected by multiparametric magnetic resonance imaging (targeted biopsy). A single radiologist read all magnetic resonance imaging, and a single pathologist independently rereviewed all biopsy and whole mount pathology, blinded to prior interpretation and matched specimen. Gleason score concordance between biopsy and prostatectomy was the primary end point.ResultsMean patient age was 62 years and median prostate specific antigen was 6.2 ng/ml. Final Gleason score at prostatectomy was 6 (13%), 7 (70%) and 8-9 (17%). A tertiary pattern was detected in 17 (31%) men. Of 45 high suspicion (image grade 4-5) magnetic resonance imaging targets 32 (71%) contained prostate cancer. The per core cancer detection rate was 20% by systematic mapping biopsy and 42% by targeted biopsy. The highest Gleason pattern at prostatectomy was detected by systematic mapping biopsy in 54%, targeted biopsy in 54% and a combination in 81% of cases. Overall 17% of cases were upgraded from fusion biopsy to final pathology and 1 (2%) was downgraded. The combination of targeted biopsy and systematic mapping biopsy was needed to obtain the best predictive accuracy.ConclusionsIn this pilot study magnetic resonance imaging-ultrasound fusion biopsy allowed for the prediction of final prostate pathology with greater accuracy than that reported previously using conventional methods (81% vs 40% to 65%). If confirmed, these results will have important clinical implications.
Project description:PURPOSE:Multiparametric magnetic resonance imaging and fusion biopsy detect more high risk prostate cancer and less low risk prostate cancer than systematic biopsy. However, there remains a small subset of patients in whom systematic biopsy captures higher grade disease than fusion biopsy. We sought to identify potential mechanisms of the failure of fusion biopsy in the detection of clinically significant prostate cancer. MATERIALS AND METHODS:We reviewed a prospectively maintained database of patients who underwent multiparametric magnetic resonance imaging followed by fusion biopsy and systematic biopsy from 2007 to 2014. In patients in whom disease was upgraded to clinically significant disease (Gleason 7 or greater) by systematic biopsy over fusion biopsy, independent re-review of magnetic resonance imaging, archived biopsy imaging and whole mount pathology as well as needle coordinate mapping were performed. Multivariate logistic regression analysis was done to determine predictors of upgrading by systematic biopsy. RESULTS:Disease was upgraded based on systematic biopsy over fusion biopsy in 135 of 1,003 patients (13.5%), of whom only 62 (6.2%) were upgraded to intermediate (Gleason 7) and high risk (Gleason 8 or greater) prostate cancer (51 or 5.1% and 11 or 1.1%, respectively). On multivariate analysis lower prostate specific antigen (p <0.001), higher magnetic resonance imaging prostate volume (p <0.001) and a lower number of target cores (p = 0.001) were predictors of upgrading by systematic biopsy. Main mechanisms of under grading by fusion biopsy included multiparametric magnetic resonance imaging reader oversight, presence of magnetic resonance imaging invisible cancer, fusion biopsy technique error and intralesion Gleason heterogeneity. CONCLUSIONS:Magnetic resonance imaging and fusion biopsy rarely missed clinically significant prostate cancer as only 62 of 1,003 cases (6.2%) were upgraded to clinically significant disease by systematic biopsy. Imaging and biopsy techniques are continually refined. Further studies will help clarify mechanisms of fusion biopsy failure and the patient populations that benefit from systematic biopsy in addition to fusion biopsy.
Project description:BACKGROUND:Gleason scores from standard, 12-core prostate biopsies are upgraded historically in 25-33% of patients. Multiparametric prostate magnetic resonance imaging (MP-MRI) with ultrasound (US)-targeted fusion biopsy may better sample the true gland pathology. OBJECTIVE:The rate of Gleason score upgrading from an MRI/US-fusion-guided prostate-biopsy platform is compared with a standard 12-core biopsy regimen alone. DESIGN, SETTING, AND PARTICIPANTS:There were 582 subjects enrolled from August 2007 through August 2012 in a prospective trial comparing systematic, extended 12-core transrectal ultrasound biopsies to targeted MRI/US-fusion-guided prostate biopsies performed during the same biopsy session. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS:The highest Gleason score from each biopsy method was compared. INTERVENTIONS:An MRI/US-fusion-guided platform with electromagnetic tracking was used for the performance of the fusion-guided biopsies. RESULTS AND LIMITATIONS:A diagnosis of prostate cancer (PCa) was made in 315 (54%) of the patients. Addition of targeted biopsy led to Gleason upgrading in 81 (32%) cases. Targeted biopsy detected 67% more Gleason ?4+3 tumors than 12-core biopsy alone and missed 36% of Gleason ?3+4 tumors, thus mitigating the detection of lower-grade disease. Conversely, 12-core biopsy led to upgrading in 67 (26%) cases over targeted biopsy alone but only detected 8% more Gleason ?4+3 tumors. On multivariate analysis, MP-MRI suspicion was associated with Gleason score upgrading in the targeted lesions (p<0.001). The main limitation of this study was that definitive pathology from radical prostatectomy was not available. CONCLUSIONS:MRI/US-fusion-guided biopsy upgrades and detects PCa of higher Gleason score in 32% of patients compared with traditional 12-core biopsy alone. Targeted biopsy technique preferentially detects higher-grade PCa while missing lower-grade tumors.
Project description:ImportanceTransrectal, ultrasonography-guided prostate biopsy often fails to disclose the severity of underlying pathologic findings for prostate cancer. Magnetic resonance imaging (MRI)-guided biopsy may improve the characterization of prostate pathologic results, but few studies have examined its use for the decision to enter active surveillance.ObjectiveTo evaluate whether confirmatory biopsy findings by MRI guidance are associated with the risk of pathologic disease upgrading among patients with prostate cancer during active surveillance.Design, settings, and participantsThis retrospective cohort study used prospectively obtained registry data from 332 men with prostate cancer of Gleason grade group (GG) 2 or lower who were referred for active surveillance at a large academic medical center from January 1, 2009, through December 31, 2017.ExposuresAll confirmatory and follow-up biopsies were performed using MRI guidance with an MRI-ultrasonography fusion device. Patients underwent repeated MRI-guided biopsies every 12 to 24 months. At follow-up sessions, in addition to obtaining systematic samples, lesions seen on MRI were targeted and foci of low-grade prostate cancer were obtained again using tracking technology. Active surveillance was terminated with detection of at least GG3 disease or receipt of treatment.Main outcomes and measuresThe primary outcome was upgrading to at least GG3 disease during active surveillance. Secondary outcomes were the associations of MRI lesion grade, prostate-specific antigen (PSA) level, PSA density, and biopsy method (targeted, systematic, or tracked) with the primary outcome.ResultsOf 332 patients (mean [SD] age, 62.8 [7.6] years), 39 (11.7%) upgraded to at least GG3 disease during follow-up. The incidence of upgrading was 7.9% (9 of 114) when the confirmatory biopsy finding was normal, 11.4% (20 of 175) when the finding showed GG1 disease, and 23.3% (10 of 43) when the finding was GG2 disease (P = .03). Men with GG2 disease were almost 8 times more likely to upgrade during surveillance compared with those with normal findings but only among those with low PSA density (hazard ratio [HR], 7.82; 95% CI, 2.29-26.68). A PSA density of at least 0.15 ng/mL/mL was associated with increased risk of upgrading among patients with normal findings (HR, 7.21; 95% CI, 1.98-26.24) or GG1 disease (HR, 2.86; 95% CI, 1.16 to 7.03) on confirmatory biopsy. A total of 46% of pathologic disease upgrades would have been missed if only the targeted biopsy was performed and 65% of disease upgrades were detected only with tracked biopsy.Conclusions and relevanceThe findings suggest that confirmatory biopsy with MRI guidance is significantly associated with future disease upgrading of prostate cancer, especially when combined with PSA density, and should be considered as an appropriate entry point for active surveillance. Systematic and targeted biopsies were additive in detection of clinically significant cancers. Repeated biopsy at sites at which findings were previously abnormal (tracking biopsy) facilitated detection of cancers not suitable for continued active surveillance.