Unknown

Dataset Information

0

Multi-Modal Single-Cell Sequencing Identifies Cellular Immunophenotypes Associated With Juvenile Dermatomyositis Disease Activity.


ABSTRACT: Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient biomarkers and treatments, in part, due to incomplete knowledge of the cell types mediating disease. We investigated immunophenotypes and cell-specific genes associated with disease activity using multiplexed RNA and protein single-cell sequencing applied to PBMCs from 4 treatment-naïve JDM (TN-JDM) subjects at baseline, 2, 4, and 6 months post-treatment and 4 subjects with inactive disease on treatment. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within monocyte, NK, CD8+ effector T and naïve B populations. The proportion of CD16+ monocytes was reduced in TN-JDM, and naïve B cells and CD4+ Tregs were expanded. Cell-type differential gene expression analysis and hierarchical clustering identified a pan-cell-type IFN gene signature over-expressed in TN-JDM in all cell types and correlated with disease activity most strongly in cytotoxic cell types. TN-JDM CD16+ monocytes expressed the highest IFN gene score and were highly skewed toward an inflammatory and antigen-presenting phenotype at both the transcriptomic and proteomic levels. A transitional B cell population with a distinct transcriptomic signature was expanded in TN-JDM and characterized by higher CD24 and CD5 proteins and less CD39, an immunoregulatory protein. This data provides new insights into JDM immune dysregulation at cellular resolution and serves as a novel resource for myositis investigators.

SUBMITTER: Neely J 

PROVIDER: S-EPMC9254730 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2022-04-30 | GSE190684 | GEO
| PRJNA787953 | ENA
| S-EPMC6923906 | biostudies-literature
2022-02-14 | E-MTAB-10714 | biostudies-arrayexpress
| S-EPMC6302943 | biostudies-literature
| S-EPMC10659396 | biostudies-literature
| S-EPMC6189418 | biostudies-literature
| S-EPMC10453137 | biostudies-literature
2023-05-31 | GSE213803 | GEO
| S-EPMC6162169 | biostudies-literature