P63 silencing induces epigenetic modulation to enhance human cardiac fibroblast to cardiomyocyte-like differentiation.
Ontology highlight
ABSTRACT: Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.
SUBMITTER: Pinnamaneni JP
PROVIDER: S-EPMC9259667 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA