Unknown

Dataset Information

0

Synthesis and Characterizations of 5,5'-Bibenzo[rst]pentaphene with Axial Chirality and Symmetry-Breaking Charge Transfer.


ABSTRACT: Exploration of novel biaryls consisting of two polycyclic aromatic hydrocarbon (PAH) units can be an important strategy toward further developments of organic materials with unique properties. In this study, 5,5'-bibenzo[rst]pentaphene (BBPP) with two benzo[rst]pentaphene (BPP) units is synthesized in an efficient and versatile approach, and its structure is unambiguously elucidated by X-ray crystallography. BBPP exhibits axial chirality, and the (M)- and (P)-enantiomers are resolved by chiral high-performance liquid chromatography and studied by circular dichroism spectroscopy. These enantiomers have a relatively high isomerization barrier of 43.6 kcal mol-1 calculated by density functional theory. The monomer BPP and dimer BBPP are characterized by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The results indicate that both BPP and BBPP fluoresce from a formally dark S1 electronic state that is enabled by Herzberg-Teller intensity borrowing from a neighboring bright S2 state. While BPP exhibits a relatively low photoluminescence quantum yield (PLQY), BBPP exhibits a significantly enhanced PLQY due to a greater S2 intensity borrowing. Moreover, symmetry-breaking charge transfer in BBPP is demonstrated by spectroscopic investigations in solvents of different polarity. This suggests high potential for singlet fission in such π-extended biaryls through appropriate molecular design.

SUBMITTER: Xu X 

PROVIDER: S-EPMC9259715 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7496469 | biostudies-literature
| S-EPMC4174994 | biostudies-literature
| S-EPMC6033179 | biostudies-literature
| S-EPMC6294912 | biostudies-literature
2022-12-12 | GSE220472 | GEO
| S-EPMC5706742 | biostudies-literature
| S-EPMC8133027 | biostudies-literature
| S-EPMC4339264 | biostudies-literature