Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential.
Ontology highlight
ABSTRACT: Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Project description:Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson's disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.
Project description:Accumulating evidence highlights the role of long non-coding RNAs (lncRNA) in cellular homeostasis, and their dysregulation in disease settings. Most lncRNAs function by interacting with proteins or protein complexes. While several orthogonal methods have been developed to identify these proteins, each method has its inherent strengths and limitations. Here, we combine two RNA-centric methods ChIRP-MS and RNA-BioID to obtain a comprehensive list of proteins that interact with the well-known lncRNA HOTAIR. Overexpression of HOTAIR has been associated with a metastasis-promoting phenotype in various cancers. Although HOTAIR is known to bind with PRC2 and LSD1 protein complexes, an unbiased and comprehensive method to map its interactome has not yet been performed. Both ChIRP-MS and RNA-BioID data sets show an association of HOTAIR with mitoribosomes, suggesting HOTAIR has functions independent of its (post-)transcriptional mode-of-action.
Project description:The human genome encodes tens of thousands of long non-coding RNAs (lncRNAs), a novel and important class of genes. Our knowledge of lncRNAs has grown exponentially since their discovery within the last decade. lncRNAs are expressed in a highly cell- and tissue-specific manner, and are particularly abundant within the nervous system. lncRNAs are subject to post-transcriptional processing and inter- and intra-cellular transport. lncRNAs act via a spectrum of molecular mechanisms leveraging their ability to engage in both sequence-specific and conformational interactions with diverse partners (DNA, RNA, and proteins). Because of their size, lncRNAs act in a modular fashion, bringing different macromolecules together within the three-dimensional context of the cell. lncRNAs thus coordinate the execution of transcriptional, post-transcriptional, and epigenetic processes and critical biological programs (growth and development, establishment of cell identity, and deployment of stress responses). Emerging data reveal that lncRNAs play vital roles in mediating the developmental complexity, cellular diversity, and activity-dependent plasticity that are hallmarks of brain. Corresponding studies implicate these factors in brain aging and the pathophysiology of brain disorders, through evolving paradigms including the following: (i) genetic variation in lncRNA genes causes disease and influences susceptibility; (ii) epigenetic deregulation of lncRNAs genes is associated with disease; (iii) genomic context links lncRNA genes to disease genes and pathways; and (iv) lncRNAs are otherwise interconnected with known pathogenic mechanisms. Hence, lncRNAs represent prime targets that can be exploited for diagnosing and treating nervous system diseases. Such clinical applications are in the early stages of development but are rapidly advancing because of existing expertise and technology platforms that are readily adaptable for these purposes.
Project description:Breast cancer (BC) is the most common cancer type among women, and morbidity and mortality rates are still very high. Despite new innovative therapeutic approaches for all BC molecular subtypes, the discovery of new molecular biomarkers involved in tumor progression has been fundamental for the implementation of personalized treatment strategies and improvement of patient management. Many experimental studies indicate that long non-coding RNAs (lncRNAs) are strongly involved in BC initiation, metastatic progression, and drug resistance. In particular, aberrant expression of HOX transcript antisense intergenic RNA (HOTAIR) lncRNA plays an important role in BC contributing to its progression and represents a predictor of BC metastasis. For its proven prognostic value, HOTAIR could represent a potential therapeutic target in BC. In the present review, we summarize the role of HOTAIR in cancer progression and drug resistance, in particular in BC, and we illustrate the main approaches for silencing it.
Project description:The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer's disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Project description:C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Project description:Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD.
Project description:Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as regulation of gene expression. Different lncRNAs exist throughout the genome. LncRNAs are also known for their roles in different human diseases such as cancer. HOTAIR is an lncRNA that plays a role as an oncogenic molecule in different cancer cells, such as breast, gastric, colorectal, and cervical cancer cells. Therefore, HOTAIR expression level is a potential biomarker for diagnostic and therapeutic purposes in several cancers. This RNA takes part in epigenetic regulation of genes and plays an important role in different cellular pathways by interacting with Polycomb Repressive Complex 2 (PRC2). In this review, we describe the molecular function and regulation of HOTAIR and its role in different types of cancers.
Project description:The blood-brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Project description:Long non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum. Treatment of HOTAIR-overexpressing ovarian and breast cancer cell lines with PNAs decreased invasion and increased chemotherapy sensitivity. Furthermore, the mechanism of action correlated with reduced nuclear factor-kappaB (NF-κB) activation and decreased expression of NF-κB target genes matrix metalloprotease 9 and interleukin 6. To deliver the anti-lncRNA to the acidic (pH approximately 6) tumor microenvironment, PNAs were conjugated to pH-low insertion peptide (pHLIP). Treatment of mice harboring platinum-resistant ovarian tumor xenografts with pHLIP-PNA constructs suppressed HOTAIR activity, reduced tumor formation and improved survival. This first report on pHLIP-PNA lncRNA targeting solid tumors in vivo suggests a novel cancer therapeutic approach.