Unknown

Dataset Information

0

Genome-Wide CRISPR Screening Identifies DCK and CCNL1 as Genes That Contribute to Gemcitabine Resistance in Pancreatic Cancer.


ABSTRACT: Pancreatic cancer is one of the most lethal cancers. Due to the difficulty of early diagnosis, most patients are diagnosed with metastasis or advanced-stage cancer, limiting the possibility of surgical treatment. Therefore, chemotherapy is applied to improve patient outcomes, and gemcitabine has been the primary chemotherapy drug for pancreatic cancer for over a decade. However, drug resistance poses a significant challenge to the efficacy of chemotherapy. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) gene-editing system is a powerful tool, and researchers have developed CRISPR/Cas9 library screening as a means to identify the genes associated with specific phenotype changes. We performed genome-wide CRISPR/Cas9 knockout screening in the mouse pancreatic cancer cell line TB32047 with gemcitabine treatment and identified deoxycytidine kinase (DCK) and cyclin L1 (CCNL1) as the top hits. We knocked out DCK and CCNL1 in the TB32047 and PANC1 cell lines and confirmed that the loss of DCK or CCNL1 enhanced gemcitabine resistance in pancreatic cells. Many researchers have addressed the mechanism of DCK-related gemcitabine resistance; however, no study has focused on CCNL1 and gemcitabine resistance. Therefore, we explored the mechanism of CCNL1-related gemcitabine resistance and found that the loss of CCNL1 activates the ERK/AKT/STAT3 survival pathway, causing cell resistance to gemcitabine treatment.

SUBMITTER: Yang H 

PROVIDER: S-EPMC9264918 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| PRJEB51345 | ENA
| S-EPMC7668168 | biostudies-literature
| S-EPMC5093682 | biostudies-literature
| S-EPMC8295287 | biostudies-literature
| S-EPMC2702280 | biostudies-literature
| S-EPMC6979480 | biostudies-literature
| S-EPMC6724471 | biostudies-literature
| S-EPMC6889377 | biostudies-literature
| S-EPMC10710899 | biostudies-literature
| S-EPMC7417733 | biostudies-literature