Construction of Spindle-Shaped Ti3+ Self-Doped TiO2 Photocatalysts Using Triethanolamine-Aqueous as the Medium and Its Photoelectrochemical Properties.
Ontology highlight
ABSTRACT: To enhance the utilization efficiency of visible light and reduce the recombination of photogenerated electrons and holes, spindle-shaped TiO2 photocatalysts with different Ti3+ concentrations were fabricated by a simple solvothermal strategy using low-cost, environmentally friendly TiH2 and H2O2 as raw materials and triethanolamine-aqueous as the medium. The photocatalytic activities of the obtained photocatalysts were investigated in the presence of visible light. X-ray diffraction (XRD), Raman spectra, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectra were applied to characterize the structure, morphologies, and chemical compositions of as-fabricated Ti3+ self-doped TiO2. The concentration of triethanolamine in the mixed solvent plays a significant role on the crystallinity, morphologies, and photocatalytic activities. The electron-hole separation efficiency was found to increase with the increase in the aspect ratio of as-fabricated Ti3+ self-doped TiO2, which was proved by transient photocurrent response and electrochemical impedance spectroscopy.
SUBMITTER: Hu Z
PROVIDER: S-EPMC9268407 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA