Unknown

Dataset Information

0

Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies.


ABSTRACT: In this study, we design ultra-broadband optical absorbers, ultra-narrow optical waveguides, and ultra-small optical cavities comprising two-dimensional metallic photonic crystals that tolerate fabrication imperfections such as position and radius disorderings. The absorbers containing gold rods show an absorption amplitude of more than 90% under 54% position disordering at 200<λ<530 nm. The absorbers containing silver rods show an absorptance of more than 90% under 54% position disordering at 200<λ<400 nm. B-type straight waveguides that contain four rows of silver rods exposed to air reveal normalized transmittances of 75% and 76% under 32% position and 60% radius disorderings, respectively. B-type L-shaped waveguides containing four rows of silver rods show 76% and 90% normalized transmittances under 32% position and 40% radius disorderings, respectively. B-type cavities containing two rings of silver rods reveal 70% and 80% normalized quality factors under 32% position and 60% radius disorderings, respectively.

SUBMITTER: Goudarzi K 

PROVIDER: S-EPMC9268687 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5141492 | biostudies-literature
| S-EPMC8257711 | biostudies-literature
| S-EPMC7933432 | biostudies-literature
| S-EPMC6446607 | biostudies-literature
| S-EPMC8374677 | biostudies-literature
| S-EPMC7000747 | biostudies-literature
| S-EPMC3912474 | biostudies-other
| S-EPMC6347631 | biostudies-literature
| S-EPMC6060059 | biostudies-literature
| S-EPMC5007480 | biostudies-literature