Histone deacetylase inhibitor, panobinostat, exerts anti-proliferative effect with partial normalization from aberrant epigenetic states on granulosa cell tumor cell lines.
Ontology highlight
ABSTRACT: The prognosis of the patients with inoperable or advanced granulosa cell tumors (GCTs) is still poor, and therefore it is important to establish a novel treatment strategy. Here we investigated the in vitro effects of a histone deacetylase inhibitor, panobinostat (PS) on two GCT cell lines (KGN and COV434). GCT cell lines were found to be susceptible to PS treatment and it inhibited cell growth mainly by apoptosis. In cell cycle analysis, PS reduced only the ratio of S phase in GCT cell lines. Combined treatment of PS with a deubiquitinase inhibitor, VLX1570 enhanced the expression of p21, cleaved PARP, cleaved caspase-9, heme oxygenase-1, and the acetylation of histone H4 and α-tubulin, leading to an additive anti-proliferative effect on KGN and COV434. The gene set enrichment analysis revealed that PS treatment suppressed DNA replication- or cell cycle-related gene expression which led to chemotherapeutic cell death and in addition, this treatment induced activation of the gene set of adherens junction towards a normalized direction as well as activation of neuron-related gene sets that might imply unexpected differentiation potential due to epigenetic modification by a HDAC inhibitor in KGN cells. Exposure of KGN and COV434 cells to PS increased the expression of E-cadherin, one of the principal regulators associated with adherens junction in quantitative RT-PCR and immunoblotting analysis. In the present study, we indicate a basis of a novel therapeutic availability of a HDAC inhibitor for the treatment of GCTs and further investigations will be warranted.
SUBMITTER: Hazama Y
PROVIDER: S-EPMC9269920 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA