Ontology highlight
ABSTRACT: Background
Depression levels in adolescents have trended upward over the past several years. According to a 2020 survey by the National Survey on Drug Use and Health, 4.1 million US adolescents have experienced at least one major depressive episode. This number constitutes approximately 16% of adolescents aged 12 to 17 years. However, only 32.3% of adolescents received some form of specialized or nonspecialized treatment. Identifying worsening symptoms earlier using mobile and wearable sensors may lead to earlier intervention. Most studies on predicting depression using sensor-based data are geared toward the adult population. Very few studies look into predicting depression in adolescents.Objective
The aim of our work was to study passively sensed data from adolescents with depression and investigate the predictive capabilities of 2 machine learning approaches to predict depression scores and change in depression levels in adolescents. This work also provided an in-depth analysis of sensor features that serve as key indicators of change in depressive symptoms and the effect of variation of data samples on model accuracy levels.Methods
This study included 55 adolescents with symptoms of depression aged 12 to 17 years. Each participant was passively monitored through smartphone sensors and Fitbit wearable devices for 24 weeks. Passive sensors collected call, conversation, location, and heart rate information daily. Following data preprocessing, 67% (37/55) of the participants in the aggregated data set were analyzed. Weekly Patient Health Questionnaire-9 surveys answered by participants served as the ground truth. We applied regression-based approaches to predict the Patient Health Questionnaire-9 depression score and change in depression severity. These approaches were consolidated using universal and personalized modeling strategies. The universal strategies consisted of Leave One Participant Out and Leave Week X Out. The personalized strategy models were based on Accumulated Weeks and Leave One Week One User Instance Out. Linear and nonlinear machine learning algorithms were trained to model the data.Results
We observed that personalized approaches performed better on adolescent depression prediction compared with universal approaches. The best models were able to predict depression score and weekly change in depression level with root mean squared errors of 2.83 and 3.21, respectively, following the Accumulated Weeks personalized modeling strategy. Our feature importance investigation showed that the contribution of screen-, call-, and location-based features influenced optimal models and were predictive of adolescent depression.Conclusions
This study provides insight into the feasibility of using passively sensed data for predicting adolescent depression. We demonstrated prediction capabilities in terms of depression score and change in depression level. The prediction results revealed that personalized models performed better on adolescents than universal approaches. Feature importance provided a better understanding of depression and sensor data. Our findings can help in the development of advanced adolescent depression predictions.
SUBMITTER: Mullick T
PROVIDER: S-EPMC9270714 | biostudies-literature |
REPOSITORIES: biostudies-literature