Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH.
Ontology highlight
ABSTRACT: The gusA gene, encoding a new beta-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a beta-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored beta-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to beta-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a beta-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified beta-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested.
SUBMITTER: Russell WM
PROVIDER: S-EPMC92721 | biostudies-literature | 2001 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA