Unknown

Dataset Information

0

Evaluation of a Multivalent Transcriptomic Metric for Diagnosing Surgical Sepsis and Estimating Mortality Among Critically Ill Patients.


ABSTRACT:

Importance

Rapid and accurate discrimination of sepsis and its potential severity currently require multiple assays with slow processing times that are often inconclusive in discerning sepsis from sterile inflammation.

Objective

To analyze a whole-blood, multivalent, host-messenger RNA expression metric for estimating the likelihood of bacterial infection and 30-day mortality and compare performance of the metric with that of other diagnostic and prognostic biomarkers and clinical parameters.

Design, setting, and participants

This prospective diagnostic and prognostic study was performed in the surgical intensive care unit (ICU) of a single, academic health science center. The analysis included 200 critically ill adult patients admitted with suspected sepsis (cohort A) or those at high risk for developing sepsis (cohort B) between July 1, 2020, and July 30, 2021.

Exposures

Whole-blood sample measurements of a custom 29-messenger RNA transcriptomic metric classifier for likelihood of bacterial infection (IMX-BVN-3) or 30-day mortality (severity) (IMX-SEV-3) in a clinical-diagnostic laboratory setting using an analysis platform (510[k]-cleared nCounter FLEX; NanoString, Inc), compared with measurement of procalcitonin and interleukin 6 (IL-6) plasma levels, and maximum 24-hour sequential organ failure assessment (SOFA) scores.

Main outcomes and measures

Estimated sepsis and 30-day mortality performance.

Results

Among the 200 patients included (124 men [62.0%] and 76 women [38.0%]; median age, 62.5 [IQR, 47.0-72.0] years), the IMX-BVN-3 bacterial infection classifier had an area under the receiver operating characteristics curve (AUROC) of 0.84 (95% CI, 0.77-0.90) for discriminating bacterial infection at ICU admission, similar to procalcitonin (0.85 [95% CI, 0.79-0.90]; P = .79) and significantly better than IL-6 (0.67 [95% CI, 0.58-0.75]; P < .001). For estimating 30-day mortality, the IMX-SEV-3 metric had an AUROC of 0.81 (95% CI, 0.66-0.95), which was significantly better than IL-6 levels (0.57 [95% CI, 0.37-0.77]; P = .006), marginally better than procalcitonin levels (0.65 [95% CI, 0.50-0.79]; P = .06), and similar to the SOFA score (0.76 [95% CI, 0.62-0.91]; P = .48). Combining IMX-BVN-3 and IMX-SEV-3 with procalcitonin or IL-6 levels or SOFA scores did not significantly improve performance. Among patients with sepsis, IMX-BVN-3 scores decreased over time, reflecting the resolution of sepsis. In 11 individuals at high risk (cohort B) who subsequently developed sepsis during their hospital course, IMX-BVN-3 bacterial infection scores did not decline over time and peaked on the day of documented infection.

Conclusions and relevance

In this diagnostic and prognostic study, a novel, multivalent, transcriptomic metric accurately estimated the presence of bacterial infection and risk for 30-day mortality in patients admitted to a surgical ICU. The performance of this single transcriptomic metric was equivalent to or better than multiple alternative diagnostic and prognostic metrics when measured at admission and provided additional information when measured over time.

SUBMITTER: Brakenridge SC 

PROVIDER: S-EPMC9277492 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6927529 | biostudies-literature
2015-10-24 | E-GEOD-74224 | biostudies-arrayexpress
2010-05-25 | E-GEOD-6535 | biostudies-arrayexpress
| S-EPMC8885730 | biostudies-literature
| S-EPMC8958971 | biostudies-literature
2015-10-24 | GSE74224 | GEO
| S-EPMC6300972 | biostudies-other
2007-12-01 | GSE6535 | GEO
| S-EPMC7224051 | biostudies-literature
| S-EPMC6010038 | biostudies-literature