Project description:Snakebite is predominantly an occupational disease affecting poor rural farmers in tropical regions and was recently added to the World Health Organisation list of Neglected Tropical Diseases (NTD). We document an overview of methodologies developed and deployed in the Myanmar Snakebite Project, a foreign aid project largely funded by the Australian Government, with the core aim to "improve outcomes for snakebite patients". A multidisciplinary team of experts was assembled that worked in a collaborative manner with colleagues in Myanmar, first to identify problems related to managing snakebite and then develop interventions aimed to improve selected problem areas. A broad approach was adopted, covering antivenom production, antivenom distribution and health system management of snakebite. Problems identified in antivenom production included poor snake husbandry resulting in poor survival of captive specimens, lack of geographical diversity; poor horse husbandry, resulting in high mortality, inadequate stock acquisition protocols and data collection, and inappropriate immunisation and bleeding techniques; and inadequate production capacity for freeze dried antivenoms and quality control systems. These problems were addressed in various ways, resulting in some substantial improvements. Antivenom distribution is being reorganised to achieve better availability and utilisation of stock. Health system management of snakebite was assessed across all levels within the area selected for the study, in Mandalay region. A comprehensive community survey indicated that hospital statistics substantially underestimated the snakebite burden, and that access to care by local villagers was delayed by transport and cost issues compounded by lack of antivenom at the most peripheral level of the health service. A health system survey confirmed under-resourcing at the local village level. Prospective case data collection initiated at tertiary hospitals indicated the extent of the snakebite burden on health resources. Interventions initiated or planned include training of health staff, development of a core of senior trainers who can "train the trainers" nationwide in a sustainable way, development and deployment of management guidelines and algorithms for snakebite and a distribution of solar powered fridges to remote health facilities to allow storage of antivenom and prompt treatment of snakebite cases before transfer to major hospitals, thereby reducing the "bite to needle" time.
Project description:Snakebites are a major cause of morbidity and mortality worldwide. Snake envenomation can cause acute local and systemic effects leading to severe complications, even death. Neurological complications such as intracranial hemorrhage, subarachnoid bleed, ischemic strokes, acute disseminated encephalomyelitis, and leukoencephalopathy have been reported. Anti-snake venom which forms the mainstay of therapy also has its own set of early and delayed complications. This report describes a rare case of snakebite resulting in leukoencephalopathy and parkinsonian features.
Project description:The role of climate driving zoonotic diseases' population dynamics has typically been addressed via retrospective analyses of national aggregated incidence records. A central question in epidemiology has been whether seasonal and interannual cycles are driven by climate variation or generated by socioeconomic factors. Here, we use compartmental models to quantify the role of rainfall and temperature in the dynamics of snakebite, which is one of the primary neglected tropical diseases. We took advantage of space-time datasets of snakebite incidence, rainfall, and temperature for Colombia and combined it with stochastic compartmental models and iterated filtering methods to show the role of rainfall-driven seasonality modulating the encounter frequency with venomous snakes. Then we identified six zones with different rainfall patterns to demonstrate that the relationship between rainfall and snakebite incidence was heterogeneous in space. We show that rainfall only drives snakebite incidence in regions with marked dry seasons, where rainfall becomes the limiting resource, while temperature does not modulate snakebite incidence. In addition, the encounter frequency differs between regions, and it is higher in regions where Bothrops atrox can be found. Our results show how the heterogeneous spatial distribution of snakebite risk seasonality in the country may be related to important traits of venomous snakes' natural history.
Project description:With the inclusion of snakebite envenoming on the World Health Organization's list of Neglected Tropical Diseases, an incentive has been established to promote research and development effort in novel snakebite antivenom therapies. Various technological approaches are being pursued by different research groups, including the use of small molecule inhibitors against enzymatic toxins as well as peptide- and oligonucleotide-based aptamers and antibody-based biotherapeutics against both enzymatic and non-enzymatic toxins. In this article, the most recent advances in these fields are presented, and the advantages, disadvantages, and feasibility of using different toxin-neutralizing molecules are reviewed. Particular focus within small molecules is directed towards the inhibitors varespladib, batimastat, and marimastat, while in the field of antibody-based therapies, novel recombinant polyclonal plantivenom technology is discussed.
Project description:BackgroundSnakebite is a neglected tropical disease that has been overlooked by healthcare decision makers in many countries. Previous studies have reported seasonal variation in hospital admission rates due to snakebites in endemic countries including Sri Lanka, but seasonal patterns have not been investigated in detail.MethodsA national community-based survey was conducted during the period of August 2012 to June 2013. The survey used a multistage cluster design, sampled 165 665 individuals living in 44 136 households and recorded all recalled snakebite events that had occurred during the preceding year. Log-linear models were fitted to describe the expected number of snakebites occurring in each month, taking into account seasonal trends and weather conditions, and addressing the effects of variation in survey effort during the study and of recall bias amongst survey respondents.ResultsSnakebite events showed a clear seasonal variation. Typically, snakebite incidence is highest during November-December followed by March-May and August, but this can vary between years due to variations in relative humidity, which is also a risk factor. Low relative-humidity levels are associated with high snakebite incidence. If current climate-change projections are correct, this could lead to an increase in the annual snakebite burden of 31.3% (95% confidence interval: 10.7-55.7) during the next 25-50 years.ConclusionsSnakebite in Sri Lanka shows seasonal variation. Additionally, more snakebites can be expected during periods of lower-than-expected humidity. Global climate change is likely to increase the incidence of snakebite in Sri Lanka.
Project description:The Myanmar Snakebite Project is an Australian government (Department of Foreign Affairs and Trade) supported foreign aid project in collaboration with the Myanmar government with the aim of improving outcomes for snakebite patients in Myanmar. As part of the project a case record database was established to document prospective cases of snakebite presenting to Mandalay General Hospital, in Upper Myanmar. The study period was 12 months (1-2-2016 to 31-1-2017). Snake identity was based on a mixture of identified dead snakes brought with patients, doctor's clinical opinion and patient identification. 965 patients were enrolled during the 12 month period, of whom 948 were included for analysis. The male: female ratio was 1.58:1. Most cases involved bites to the lower limbs (82.5%) and adults involved in farm work, confirming snakebite as an occupational disease in this community. Motorised transport was by far the most common form of transport to health care and most patients sought care from the health system (87.7%), not traditional healers (11.5%) as their first point of contact. The officially promoted application of a pressure pad, bandage and immobilisation as first aid for snakebite was almost never used, while most patients used some form of tourniquet (92.0%). 85.4% of cases where a snake ID was listed were bitten by Russell's vipers. Russell's viper bites were responsible for all fatalities (9.8% of cases) and all cases of Acute Kidney Injury (AKI). For all cases, clinical features included local swelling (76.5%), local pain (62.6%), AKI (59.8%), incoagulable blood (57.9%), regional lymphadenopathy (39.8%), nausea/vomiting (40.4%), thrombocytopenia (53.6%), abdominal pain (28.8%), shock (11.8%), secondary infection (8.6%), panhypopituitarism (2.1%). AKI required renal replacement therapy (RRT) in 23.9% of cases, all ascribed to Russell's viper bite. Green pit viper bites were the next most common cause of bites (7.6%) and were associated with incoagulable blood (29%) and occasionally shock (5%) and local necrosis (3%), and in one case AKI not requiring RRT. In contrast to Russell's viper bites, green pit viper bite was most likely to occur in the home (49%). Some green pit viper patients were treated with Russell's viper antivenom (15%), presumably because they had incoagulable blood, although this antivenom is not effective against green pit viper envenoming. For the entire patient group, antivenom was given in 80.5% of cases. The most common indications were presence of coagulopathy/non-clotting blood (59.8%), local swelling (47.4%), oliguria/anuria (19.8%), heavy proteinuria (19.4%). A febrile reaction to antivenom was reported in 47.9% of cases, while anaphylaxis, occurred in 7.9% of cases.
Project description:BackgroundPublished information on snakebite is rare in Bhutan although remarkably higher number of snakebites and associated deaths are reported from other South Asian countries.Aims and methodologyStructured questionnaire was used to collect knowledge of health workers in snakebite management and health seeking behavior of snakebite victims as observed by health workers. Study was conducted in purposively sampled 10 Dzongkhags (district level administrative units) with higher incidence of snakebites.ResultHeath workers scored 27-91% (with an average of 63%, SD = 14) for 52 questions related to snake identification and snakebite management. Among 118 health workers interviewed, 23% had adequate knowledge on snakes and snakebite management while 77% had inadequate knowledge. Among 32 Doctors, 63% of them scored above or equal to 75%. Health workers from Sarpang scored higher (76%, SD = 11) than those from other Dzongkhags. Snakebite victim's visit to local (traditional) healers prior to seeking medical help from hospital was observed by 75 (63%) health workers. Fifty one percent of health workers observed patients treated with local methods such as the use of black stone called Jhhar Mauro (believed to absorb snake venom), application of honey, rubbing of green herbal paste made up of Khenpa Shing (Artemisia myriantha Wallich ex Besser var. paleocephala [Pamp] Ling) and consumption of fluid made up of Neem leaf (Azadirachta indica Juss). Use of tight tourniquet as a first aid to snakebite was observed by 80% of the health workers.ConclusionHealth workers lack confidence in snakebite management. Snakebite victims are likely to suffer from harmful local practices and traditional beliefs on local treatment practices. Empowering health workers with adequate knowledge on snakebite management and making locals aware in pre-hospital care of snakebites are needed to improve the pre- and in-hospital management of snakebite in Bhutan.
Project description:On June 9th, 2017 WHO categorized snakebite envenomation into the Category A of the Neglected Tropical Diseases. This new situation will allow access to new funding, paving the way for wider and deeper researches. It should also expand the accessibility of antivenoms. Let us hope that it also leads to cooperation among stakeholders, aiming at improving the management of snakebites in developing countries.
Project description:Managing contamination and diverse bacterial loads in 16S rRNA deep sequencing of clinical samples - implications of the law of small numbers
Project description:A mathematical model is designed to assess the impact of some interventional strategies for curtailing the burden of snakebite envenoming in a community. The model is fitted with real data set. Numerical simulations have shown that public health awareness of the susceptible individuals on snakebite preventive measures could reduce the number of envenoming and prevent deaths and disabilities in the population. The simulations further revealed that if at least fifty percent of snakebite envenoming patients receive early treatment with antivenom a substantial number of deaths will be averted. Furthermore, it is shown using optimal control that combining public health awareness and antivenom treatment averts the highest number of snakebite induced deaths and disability adjusted life years in the study area. To choose the best strategy amidst limited resources in the study area, cost effectiveness analysis in terms of incremental cost effectiveness ratio is performed. It has been established that the control efforts of combining public health awareness of the susceptible individuals and antivenom treatment for victims of snakebite envenoming is the most cost effective strategy. Approximately the sum of US$72,548 is needed to avert 117 deaths or 2,739 disability adjusted life years that are recorded within 21 months in the study area. Thus, the combination of these two control strategies is recommended.