Unknown

Dataset Information

0

Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling


ABSTRACT:

Background

Exosomes derived from cardiac microvascular endothelial cells (CMECs) under hypoxia can mediate cardiac repair functions and alleviate pyroptosis and oxidative stress during ischemia-reperfusion (I/R) injury. This study is aimed at investigating the effect and mechanism of miR-27b-3p underlying hypoxic CMECs-derived exosomes against I/R injury.

Methods

CMECs were isolated from the left ventricle of Sprague-Dawley rats, followed by culturing under hypoxic conditions or pretreatment with the miR-27b-3p inhibitor. CMECs-derived exosomes were added into H9C2 cells before hypoxia/reoxygenation (H/R) or injected into the rat heart before I/R injury. An in vivo I/R injury model was established by ligating and releasing the left anterior descending coronary artery. Expression of pyroptosis-related factors was detected using Western blot, and heart infarcted size was determined by the 2,3,5-triphenyl-2H-tetrazpinolium chloride staining method. Dual-Luciferase Reporter assays were performed to analyze the interactions of nmiR-27b-3p-forkhead box O1 (Foxo1) and Gasdermin D- (GSDMD-) Foxo1. Chromatin-immunoprecipitation (ChIP) assays were performed to validate the interactions between forkhead box O1 (Foxo1) and Gasdermin D (GSDMD) and Foxo1-mediated histone acetylation of GSDMD.

Results

CMECs were successfully identified from left ventricle of Sprague-Dawley rats. The expressions of Foxo1 and pyroptosis-related proteins (GSDMD, NLPR3, cleaved caspase 1, IL-1β, and IL-18) were upregulated in the rat heart after I/R injury. Treatment of CMEC-derived exosomes, especially that under hypoxic conditions, significantly reduced pyroptosis in the rat heart. miR-27b-3p was significantly upregulated in CMEC-derived exosomes under hypoxic conditions, and miR-27b-3p inhibition in exosomes alleviated its cytoprotection and inhibited oxidative stress in H9C2 cells. Treatment with Foxo1 overexpression plasmids aggravated in vitro H/R and in vivo I/R injury by upregulating pyroptosis-related proteins. Further experiments validated that miR-27b-3p negatively targeted Foxo1, which bound to the promoter region of GSDMD.

Conclusions

These results demonstrated a great therapeutic efficacy of miR-27b-3p overexpression in hypoxic CMEC-derived exosomes in preventing the development of myocardial damage post I/R injury through inhibiting Foxo1/GSDMD signaling-induced oxidative stress and pyroptosis.

SUBMITTER: Zhang B 

PROVIDER: S-EPMC9279077 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7774461 | biostudies-literature
| S-EPMC9010441 | biostudies-literature
| S-EPMC9440918 | biostudies-literature
| S-EPMC8807034 | biostudies-literature
| S-EPMC10325858 | biostudies-literature
| S-EPMC7178548 | biostudies-literature
| S-EPMC6992766 | biostudies-literature
| S-EPMC9582395 | biostudies-literature
| S-EPMC8841757 | biostudies-literature
| S-EPMC10351145 | biostudies-literature