Unknown

Dataset Information

0

Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing.


ABSTRACT: Memristors, or memristive devices, have attracted tremendous interest in neuromorphic hardware implementation. However, the high electric-field dependence in conventional filamentary memristors results in either digital-like conductance updates or gradual switching only in a limited dynamic range. Here, we address the switching parameter, the reduction probability of Ag cations in the switching medium, and ultimately demonstrate a cluster-type analogue memristor. Ti nanoclusters are embedded into densified amorphous Si for the following reasons: low standard reduction potential, thermodynamic miscibility with Si, and alloy formation with Ag. These Ti clusters effectively induce the electrochemical reduction activity of Ag cations and allow linear potentiation/depression in tandem with a large conductance range (~244) and long data retention (~99% at 1 hour). Moreover, according to the reduction potentials of incorporated metals (Pt, Ta, W, and Ti), the extent of linearity improvement is selectively tuneable. Image processing simulation proves that the Ti4.8%:a-Si device can fully function with high accuracy as an ideal synaptic model.

SUBMITTER: Kang J 

PROVIDER: S-EPMC9279478 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC11315111 | biostudies-literature
| S-EPMC9166790 | biostudies-literature
| S-EPMC7113278 | biostudies-literature
| S-EPMC9018844 | biostudies-literature
| S-EPMC11345731 | biostudies-literature
| S-EPMC10131856 | biostudies-literature
| S-EPMC5940832 | biostudies-other
| S-EPMC8766734 | biostudies-literature
| S-EPMC11342358 | biostudies-literature
| S-EPMC9353447 | biostudies-literature