Unknown

Dataset Information

0

MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6.


ABSTRACT:

Background

MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation.

Methods

In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a.

Results

Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway.

Conclusions

MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.

SUBMITTER: Peng Z 

PROVIDER: S-EPMC9279817 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6.

Peng Zhuli Z   Mai Zhihui Z   Xiao Feng F   Liu Guanqi G   Wang Yixuan Y   Xie Shanshan S   Ai Hong H  

Annals of translational medicine 20220601 12


<h4>Background</h4>MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation.<h4>Methods</h4>In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm<sup>2</sup> for 1 hour) using a parallel plate flow system. The expression of miR-20a was qua  ...[more]

Similar Datasets

| S-EPMC3905160 | biostudies-literature
| S-EPMC9153140 | biostudies-literature
| S-EPMC8296686 | biostudies-literature
| S-EPMC4660203 | biostudies-literature
| S-EPMC3623893 | biostudies-literature
| S-EPMC9581166 | biostudies-literature
| S-EPMC10520674 | biostudies-literature
| S-EPMC8207591 | biostudies-literature
| S-EPMC4642269 | biostudies-literature
| S-EPMC5264139 | biostudies-literature