Ontology highlight
ABSTRACT: Background
MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation.Methods
In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a.Results
Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway.Conclusions
MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.
SUBMITTER: Peng Z
PROVIDER: S-EPMC9279817 | biostudies-literature | 2022 Jun
REPOSITORIES: biostudies-literature
Peng Zhuli Z Mai Zhihui Z Xiao Feng F Liu Guanqi G Wang Yixuan Y Xie Shanshan S Ai Hong H
Annals of translational medicine 20220601 12
<h4>Background</h4>MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation.<h4>Methods</h4>In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm<sup>2</sup> for 1 hour) using a parallel plate flow system. The expression of miR-20a was qua ...[more]