ABSTRACT: Lung cancer is the most talked about cancer in the world. It is also one of the cancers that currently has a high mortality rate. The aim of our research is to find more effective therapeutic targets and prognostic markers for human lung cancer. First, we download gene expression data from the GEO database. We performed weighted co-expression network analysis on the selected genes, we then constructed scale-free networks and topological overlap matrices, and performed correlation modular analysis with the cancer group. We screened the 200 genes with the highest correlation in the cyan module for functional enrichment analysis and protein interaction network construction, found that most of them focused on cell division, tumor necrosis factor-mediated signaling pathways, cellular redox homeostasis, reactive oxygen species biosynthesis, and other processes, and were related to the cell cycle, apoptosis, HIF-1 signaling pathway, p53 signaling pathway, NF-κB signaling pathway, and several cancer disease pathways are involved. Finally, we used the GEPIA website data to perform survival analysis on some of the genes with GS > 0.6 in the cyan module. CBX3, AHCY, MRPL12, TPGB, TUBG1, KIF11, LRRC59, MRPL17, TMEM106B, ZWINT, TRIP13, and HMMR was identified as an important prognostic factor for lung cancer patients. In summary, we identified 12 mRNAs associated with lung cancer prognosis. Our study contributes to a deeper understanding of the molecular mechanisms of lung cancer and provides new insights into drug use and prognosis.