Project description:In this work, composite coatings of chitosan and silver nanoparticles were presented as an antibacterial coating for orthopedic implants. Coatings were deposited on AISI 304L using the galvanic deposition method. In galvanic deposition, the difference of the electrochemical redox potential between two metals (the substrate and a sacrificial anode) has the pivotal role in the process. In the coupling of these two metals a spontaneous redox reaction occurs and thus no external power supply is necessary. Using this process, a uniform deposition on the exposed area and a good adherence of the composite coating on the metallic substrate were achieved. Physical-chemical characterizations were carried out to evaluate morphology, chemical composition, and the presence of silver nanoparticles. These characterizations have shown the deposition of coatings with homogenous and porous surface structures with silver nanoparticles incorporated and distributed into the polymeric matrix. Corrosion tests were also carried out in a simulated body fluid at 37 °C in order to simulate the same physiological conditions. Corrosion potential and corrosion current density were obtained from the polarization curves by Tafel extrapolation. The results show an improvement in protection against corrosion phenomena compared to bare AISI 304L. Furthermore, the ability of the coating to release the Ag+ was evaluated in the simulated body fluid at 37 °C and it was found that the release mechanism switches from anomalous to diffusion controlled after 3 h.
Project description:Here we present a new bifunctional layer-by-layer (LbL) construct made by combining a permanent microbicidal polyelectrolyte multilayered (PEM) base film with a hydrolytically degradable PEM top film that offers controlled and localized delivery of therapeutics. Two degradable film architectures are presented: (1) bolus release of an antibiotic (gentamicin) to eradicate initial infection at the implant site, or (2) sustained delivery of an anti-inflammatory drug (diclofenac) to cope with inflammation at the site of implantation due to tissue injury. Each degradable film was built on top of a permanent base film that imparts the implantable device surface with microbicidal functionality that prevents the formation of biofilms. Controlled-delivery of gentamicin was demonstrated over hours and that of diclofenac over days. Both drugs retained their efficacy upon release. The permanent microbicidal base film was biocompatible with A549 epithelial cancer cells and MC3T3-E1 osteoprogenitor cells, while also preventing bacteria attachment from turbid media for the entire duration of the two weeks studied. The microbicidal base film retains its functionality after the biodegradable films have completely degraded. The versatility of these PEM films and their ability to prevent biofilm formation make them attractive as coatings for implantable devices.
Project description:Polyelectrolyte multilayers (PEMs) based on polyelectrolyte complex (PEC) structures are recognized as interesting materials for manufacturing functionalized coatings or drug delivery platforms. Difficulties in homogeneous PEC system development generated the idea of chitosan (CS)/low-methoxy amidated pectin (LM PC) multilayer film optimization with regard to the selected variables: the polymer ratio, PC type, and order of polymer mixing. Films were formulated by solvent casting method and then tested to characterize CS/LM PC PECs, using thermal analysis, Fourier transform infrared spectroscopy (FTIR), turbidity, and zeta potential measurements. The internal structure of the films was visualized by using scanning electron microscopy. Analysis of the mechanical and swelling properties enabled us to select the most promising formulations with high uniformity and mechanical strength. Films with confirmed multilayer architecture were indicated as a promising material for the multifunctional systems development for buccal drug delivery. They were also characterized by improved thermal stability as compared to the single polymers and their physical mixtures, most probably as a result of the CS-LM PC interactions. This also might indicate the potential protective effect on the active substances being incorporated in the PEC-based films.
Project description:A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.
Project description:Despite the accessibility of ultrasound, the clinical potential of ultrasound-active theranostic agents has not been fully realized because it requires combining sufficient imaging contrast, high encapsulation efficiency, and ultrasound-triggered release in one entity. We report on theranostic polymer microcapsules composed of hydrogen-bonded multilayers of tannic acid and poly(N-vinylpyrrolidone) that produce high imaging contrast and deliver the anticancer drug doxorubicin upon low-power diagnostic or high-power therapeutic ultrasound irradiation. These capsules exhibit excellent imaging contrast in both brightness and harmonic modes and show prolonged contrast over six months, unlike commercially available microbubbles. We also demonstrate low-dose gradual and high-dose fast release of doxorubicin from the capsules by diagnostic (∼100 mW/cm2) and therapeutic (>10 W/cm2) ultrasound irradiation, respectively. We show that the imaging contrast of the capsules can be controlled by varying the number of layers, polymer type (relatively rigid tannic acid versus more flexible poly(methacrylic acid)), and polymer molecular weight. In vitro studies demonstrate that 50% doxorubicin release from ultrasound-treated capsules induces 97% cytotoxicity to MCF-7 human cancer cells, while no cytotoxicity is found without the treatment. Considering the strong ultrasound imaging contrast, high encapsulation efficiency, biocompatibility, and tunable drug release, these microcapsules can be used as theranostic agents for ultrasound-guided chemotherapy.
Project description:Surface modification of orthopedic and dental implants has been demonstrated to be an effective strategy to accelerate bone healing at early implantation times. Among the different alternatives, coating implants with a layer of hydroxyapatite (HAp) is one of the most used techniques, due to its excellent biocompatibility and osteoconductive behavior. The composition and crystalline structure of HAp allow for numerous ionic substitutions that provide added value, such as antibiotic properties or osteoinduction. In this article, we will review and critically analyze the most important advances in the field of substituted hydroxyapatite coatings. In recent years substituted HAp coatings have been deposited not only on orthopedic prostheses and dental implants, but also on macroporous scaffolds, thus expanding their applications towards bone regeneration therapies. Besides, the capability of substituted HAps to immobilize proteins and growth factors by non-covalent interactions has opened new possibilities for preparing hybrid coatings that foster bone healing processes. Finally, the most important in vivo outcomes will be discussed to understand the prospects of substituted HAp coatings from a clinical point of view.
Project description:Polymers have been widely used for the development of drug delivery systems accommodating the regulated release of therapeutic agents in consistent doses over a long period, cyclic dosing, and the adjustable release of both hydrophobic and hydrophilic drugs. Nowadays, polymer blends are increasingly employed in drug development as they generate more promising results when compared to those of homopolymers. This review article describes the recent research efforts focusing on the utilization of chitosan blends with other polymers in an attempt to enhance the properties of chitosan. Furthermore, the various applications of chitosan blends in drug delivery are thoroughly discussed herein. The literature from the past ten years was collected using various search engines such as ScienceDirect, J-Gate, Google Scholar, PubMed, and research data were compiled according to the various novel carrier systems. Nanocarriers made from chitosan and chitosan derivatives have a positive surface charge, which allows for control of the rate, duration, and location of drug release in the body, and can increase the safety and efficacy of the delivery system. Recently developed nanocarriers using chitosan blends have been shown to be cost-effective, more efficacious, and prolonged release carriers that can be incorporated into suitable dosage forms.
Project description:The eye is a model organ for the local delivery of therapeutics. This proves beneficial when treating vitreous inflammation and other ophthalmic pathologies. The chronicity of certain diseases, however, limits the effectiveness of locally administered drugs. To maintain such treatments often requires frequent office visits and can result in increased risk of infection and toxicity to the patient. This paper focuses on the implantable devices and particulate drug delivery systems that are currently being implemented and investigated to overcome these challenges. Implants currently on the market or undergoing clinical trials include those made of nonbiodegradable polymers, containing ganciclovir, fluocinolone acetonide, triamcinolone acetonide, and ranibizumab, and biodegradable polymers, containing dexamethasone, triamcinolone acetonide, and ranibizumab. Investigational intravitreal implants and particulate drug delivery systems, such as nanoparticles, microparticles, and liposomes, are also explored in this review article.
Project description:Without bioadhesive delivery devices, complex compounds are typically degraded or cleared from mucosal tissues by the mucous layer.While some chemically modified, microstructured surfaces have been studied in aqueous environments,adhesion due to geometry alone has not been investigated. Silicon nanowire-coated beads show significantly better adhesion than those with targeting agents under shear, and can increase the lift-off force 100-fold. We have shown that nanowire coatings, paired with epithelial physiology, significantly increase adhesion in mucosal conditions.
Project description:In order to address material limitations of biologically interfacing electrodes, modified silica nanoparticles are utilized as dopants for conducting polymers. Silica precursors are selected to form a thiol modified particle (TNP), following which the particles are oxidized to sulfonate modified nanoparticles (SNPs). The selective inclusion of hexadecyl trimethylammonium bromide allows for synthesis of both porous and nonporous SNPs. Nonporous nanoparticle doped polyethylenedioxythiophene (PEDOT) films possess low interfacial impedance, high charge injection (4.8 mC cm-2 ), and improved stability under stimulation compared to PEDOT/poly(styrenesulfonate). Porous SNP dopants can serve as drug reservoirs and greatly enhance the capability of conducting polymer-based, electrically controlled drug release technology. Using the SNP dopants, drug loading and release is increased up to 16.8 times, in addition to greatly expanding the range of drug candidates to include both cationic and electroactive compounds, all while maintaining their bioactivity. Finally, the PEDOT/SNP composite is capable of precisely modulating neural activity in vivo by timed release of a glutamate receptor antagonist from coated microelectrode sites. Together, this work demonstrates the feasibility and potential of doping conducting polymers with engineered nanoparticles, creating countless options to produce composite materials for enhanced electrical stimulation, neural recording, chemical sensing, and on demand drug delivery.