Ontology highlight
ABSTRACT: Background
The filamentous temperature-sensitive H protease (ftsH) gene family plays an important role in plant growth and development. FtsH proteins belong to the AAA protease family. Studies have shown that it is a key gene for plant chloroplast development and photosynthesis regulation. In addition, the ftsH gene is also involved in plant response to stress. At present, the research and analysis of the ftsH gene family are conducted in microorganisms such as Escherichia coli and Oenococcus and various plants such as Arabidopsis, pear, rice, and corn. However, analysis reports on ftsH genes from tobacco (Nicotiana tabacum L.), an important model plant, are still lacking. Since ftsH genes regulate plant growth and development, it has become necessary to systematically study this gene in an economically important plant like tobacco.Results
This is the first study to analyze the ftsH gene from Nicotiana tabacum L. K326 (NtftsH). We identified 20 ftsH genes from the whole genome sequence, renamed them according to their chromosomal locations, and divided them into eight subfamilies. These 20 NtftsH genes were unevenly distributed across the 24 chromosomes. We found four pairs of fragment duplications. We further investigated the collinearity between these genes and related genes in five other species. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified differential expression patterns of NtftsH in different tissues and under various abiotic stress conditions.Conclusions
This study provides a comprehensive analysis of the NtftsH gene family. The exon-intron structure and motif composition are highly similar in NtftsH genes that belong to the same evolutionary tree branch. Homology analysis and phylogenetic comparison of ftsH genes from several different plants provide valuable clues for studying the evolutionary characteristics of NtftsH genes. The NtftsH genes play important roles in plant growth and development, revealed by their expression levels in different tissues as well as under different stress conditions. Gene expression and phylogenetic analyses will provide the basis for the functional analysis of NtftsH genes. These results provide a valuable resource for a better understanding of the biological role of the ftsH genes in the tobacco plant.
SUBMITTER: Pu T
PROVIDER: S-EPMC9281163 | biostudies-literature |
REPOSITORIES: biostudies-literature