Unknown

Dataset Information

0

Aerogel-Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling.


ABSTRACT: Passive daytime radiative cooling (PDRC) is an emerging sustainable technology that can spontaneously radiate heat to outer space through an atmospheric transparency window to achieve self-cooling. PDRC has attracted considerable attention and shows great potential for personal thermal management (PTM). However, PDRC polymers are limited to polyethylene, polyvinylidene fluoride, and their derivatives. In this study, a series of polymer films based on thermoplastic polyurethane (TPU) and their composite films with silica aerogels (aerogel-functionalized TPU (AFTPU)) are prepared using a simple and scalable non-solvent-phase-separation strategy. The TPU and AFTPU films are freestanding, mechanically strong, show high solar reflection up to 94%, and emit strongly in the atmospheric transparency window, thereby achieving subambient cooling of 10.0 and 7.7 °C on a hot summer day for the TPU and AFTPU film (10 wt%), respectively. The AFTPU films can be used as waterproof and moisture permeable coatings for traditional textiles, such as cotton, polyester, and nylon, and the highest temperature drop of 17.6 °C is achieved with respect to pristine nylon fabric, in which both the cooling performance and waterproof properties are highly desirable for the PTM applications. This study opens up a promising route for designing common polymers for highly efficient PDRC.

SUBMITTER: Shan X 

PROVIDER: S-EPMC9284144 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aerogel-Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling.

Shan Xiameng X   Liu Ling L   Wu Yusi Y   Yuan Dengsen D   Wang Jing J   Zhang Chengjiao C   Wang Jin J  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20220427 20


Passive daytime radiative cooling (PDRC) is an emerging sustainable technology that can spontaneously radiate heat to outer space through an atmospheric transparency window to achieve self-cooling. PDRC has attracted considerable attention and shows great potential for personal thermal management (PTM). However, PDRC polymers are limited to polyethylene, polyvinylidene fluoride, and their derivatives. In this study, a series of polymer films based on thermoplastic polyurethane (TPU) and their co  ...[more]

Similar Datasets

| S-EPMC8040807 | biostudies-literature
| S-EPMC9919039 | biostudies-literature
| S-EPMC6258698 | biostudies-other
| S-EPMC8655219 | biostudies-literature
| S-EPMC9240859 | biostudies-literature
| S-EPMC7162956 | biostudies-literature
| S-EPMC6821464 | biostudies-literature
| S-EPMC9374334 | biostudies-literature
| S-EPMC9419168 | biostudies-literature
| S-EPMC7705009 | biostudies-literature