Ontology highlight
ABSTRACT: Aims
The kidneys play a major role in maintaining Pi homeostasis. Patients in later stages of CKD develop hyperphosphatemia. One novel treatment option is tenapanor, an intestinal-specific NHE3 inhibitor. To gain mechanistic insight into the role of intestinal NHE3 in Pi homeostasis, we studied tamoxifen-inducible intestinal epithelial cell-specific NHE3 knockout (NHE3IEC-KO ) mice.Methods
Mice underwent dietary Pi challenges, and hormones as well as urinary/plasma Pi were determined. Intestinal 33 P uptake studies were conducted in vivo to compare the effects of tenapanor and NHE3IEC-KO . Ex vivo Pi transport was measured in everted gut sacs and brush border membrane vesicles. Intestinal and renal protein expression of Pi transporters were determined.Results
On the control diet, NHE3IEC-KO mice had similar Pi homeostasis, but a ~25% reduction in FGF23 compared with control mice. Everted gut sacs and brush border membrane vesicles showed enhanced Pi uptake associated with increased Npt2b expression in NHE3IEC-KO mice. Acute oral Pi loading resulted in higher plasma Pi in NHE3IEC-KO mice. Tenapanor inhibited intestinal 33 P uptake acutely but then led to hyper-absorption at later time points compared to vehicle. In response to high dietary Pi , plasma Pi and FGF23 increased to higher levels in NHE3IEC-KO mice which was associated with greater Npt2b expression. Reduced renal Npt2c and a trend for reduced Npt2a expression were unable to correct for higher plasma Pi .Conclusion
Intestinal NHE3 has a significant contribution to Pi homeostasis. In contrast to effects described for tenapanor on Pi homeostasis, NHE3IEC-KO mice show enhanced, rather than reduced, intestinal Pi uptake.
SUBMITTER: Xue J
PROVIDER: S-EPMC9286053 | biostudies-literature |
REPOSITORIES: biostudies-literature