Temporal Evolution of Low-Latitude Plasma Blobs Identified From Multiple Measurements: ICON, GOLD, and Madrigal TEC.
Ontology highlight
ABSTRACT: Low-latitude plasma blobs have been studied since their first being reported in 1986. However, investigations on temporal evolution of a blob or on continental scale (>2,000 km) ionospheric contexts around it are relatively rare. Overcoming these limitations can help elucidate the blob generation mechanisms. On 21 January 2021, the Ionospheric Connection Explorer satellite encountered a typical low-latitude blob near the northeastern coast of South America. The event was collocated with a local enhancement in 135.6 nm nightglow at the poleward edge of an equatorial plasma bubble (EPB), as observed by the Global-scale Observations of the Limb and Disk (GOLD) imager. Total electron content maps from the Global Navigation Satellite System confirm the GOLD observations. Unlike typical medium-scale traveling ionospheric disturbances (MSTIDs), the blob had neither well-organized wavefronts nor moved in the southwest direction. Neither was the blob a monotonically decaying equatorial ionization anomaly crest past sunset. Rather, the blob varied following latitudinal expansion/contraction of EPBs at similar magnetic longitudes. The observational results support that mechanisms other than MSTIDs, such as EPBs, can also contribute to blob generation.
SUBMITTER: Park J
PROVIDER: S-EPMC9287003 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA