ABSTRACT: Streptococcus Iniae infection is recognized as a disease with substantial economic losses, infecting a wide range of fish species. The limitations of current vaccines and strategies have led to the identification of new methods to control this disease. Multi-epitope vaccines which employ various immunogenic proteins can be promising. The current research project aimed to design an efficient multi-epitope vaccine against Streptococcus Iniae infection in fish. To this end, six immunogenic proteins of Streptococcus Iniae, including FBA, ENO, Sip11, GAPDH, MtsB, and SCPI proteins, were applied for epitope prediction. The best B cell, T cell, and IFNγ epitopes of the immunogenic proteins, as well as interleukin-8, were used to construct a multi-epitope vaccine. Thereafter, different parameters of the designed vaccine, including physicochemical features, antigenicity, secondary structure, and tertiary structure, were evaluated. Moreover, the interaction of the interleukin-8 domain of the designed vaccine and its receptor was investigated by molecular docking strategy. Finally, nucleotide sequence of the vaccine was adapted to express in Escherichia coli. The results of the present study pointed out that the designed vaccine was a stable vaccine with molecular weight and antigenicity score of 45 kDa and 0.936, respectively. Furthermore, the structure analysis results revealed that the designed vaccine contained 23.49% alpha helix, with 90.5% residues in favored region. Finally, it was demonstrated that the interleukin-8 domain of the designed vaccine could be successfully docked to its receptor with the lowest energy of -1020.9. Based on the obtained results, it seems that the designed vaccine can be an efficient candidate to prevent Streptococcus Iniae infection in fish.