Project description:The World Health Organization recommends the utilization of partograph for all laboring mothers. Partograph is a cost-effective, single sheet of paper that is used to follow maternal and fetal condition and progress of labour. Obstructed and prolonged labours are major causes of maternal deaths. These causes can be minimized by routine utilization of partograph. However, several maternal and fetal deaths occur in health facilities due to poor quality of labour follow-up. Therefore, this study aims to assess the utilization of partograph and associated factors among obstetric care providers working in Wolaita zone health facilities, Southern Ethiopia. An institution-based cross-sectional survey was conducted from April to May 2016. A pretested and structured self-administered questionnaire was used to collect the data. Data entry and analysis was conducted using SPSS Version 21.0. Logistic regression was used to identify associations. A P value <0.2 in binary logistic regression were transferred to multiple logistic regressions. Odds ratio with 95% CI, P-value <0.05 were considered as statistically significant. Of a total of 442 participants, 73.6% utilize partograph routinely. From the total variables in the study, a midwifery profession showed a significant association with the dependent variable (AOR = 4.7,95% CI:1.8-12). The utilization of partograph in the study area was low as per the World Health Organization recommendation. This study recommends that assigning midwives in the obstetric ward other than other health professionals will increase the routine utilization of partograph.
Project description:Next-generation sequencing (NGS) approaches for measuring RNA and DNA benefit from greatly increased sensitivity, dynamic range and detection of novel transcripts. These technologies are rapidly becoming the standard for molecular assays and represent huge potential value to the practice of oncology. However, many challenges exist in the transition of these technologies from research application to clinical practice. This review discusses the value of NGS in detecting mutations, copy number changes and RNA quantification and their applications in oncology, the challenges for adoption and the relevant steps that are needed for translating this potential to routine practice.
Project description:Despite advances in cancer genomics and the increased use of genomic medicine, metastatic cancer is still mostly an incurable and fatal disease. With diminishing returns from traditional drug discovery strategies, and high clinical failure rates, more emphasis is being placed on alternative drug discovery platforms, such as ex vivo approaches. Ex vivo approaches aim to embed biological relevance and inter-patient variability at an earlier stage of drug discovery, and to offer more precise treatment stratification for patients. However, these techniques also have a high potential to offer personalised therapies to patients, complementing and enhancing genomic medicine. Although an array of approaches are available to researchers, only a minority of techniques have made it through to direct patient treatment within robust clinical trials. Within this review, we discuss the current challenges to ex vivo approaches within clinical practice and summarise the contemporary literature which has directed patient treatment. Finally, we map out how ex vivo approaches could transition from a small-scale, predominantly research based technology to a robust and validated predictive tool. In future, these pre-clinical approaches may be integrated into clinical cancer pathways to assist in the personalisation of therapy choices and to hopefully improve patient experiences and outcomes.
Project description:In this work, the position of contemporary microbiology is considered from the perspective of scientific success, and a list of historical points and lessons learned from the fields of medical microbiology, microbial ecology and systems biology is presented. In addition, patterns in the development of top-down research topics that emerged over time as well as overlapping ideas and personnel, which are the first signs of trans-domain research activities in the fields of metagenomics, metaproteomics, metatranscriptomics and metabolomics, are explored through analysis of the publication networks of 28 654 papers using the computer programme Pajek. The current state of affairs is defined, and the need for meta-analyses to leverage publication biases in the field of microbiology is put forward as a very important emerging field of microbiology, especially since microbiology is progressively dealing with multi-scale systems. Consequently, the need for cross-fertilisation with other fields/disciplines instead of 'more microbiology' is needed to advance the field of microbiology as such. The reader is directed to consider how novel technologies, the introduction of big data approaches and artificial intelligence have transformed microbiology into a multi-scale field and initiated a shift away from its history of mostly manual work and towards a largely technology-, data- and statistics-driven discipline that is often coupled with automation and modelling.
Project description:Making gender bias visible allows to fill the gaps in knowledge and understand health records and risks of women and men. The coronavirus disease 2019 (COVID-19) pandemic has shown a clear gender difference in health outcomes. The more severe symptoms and higher mortality in men as compared to women are likely due to sex and age differences in immune responses. Age-associated decline in sex steroid hormone levels may mediate proinflammatory reactions in older adults, thereby increasing their risk of adverse outcomes, whereas sex hormones and/or sex hormone receptor modulators may attenuate the inflammatory response and provide benefit to COVID-19 patients. While multiple pharmacological options including anticoagulants, glucocorticoids, antivirals, anti-inflammatory agents and traditional Chinese medicine preparations have been tested to treat COVID-19 patients with varied levels of evidence in terms of efficacy and safety, information on sex-targeted treatment strategies is currently limited. Women may have more benefit from COVID-19 vaccines than men, despite the occurrence of more frequent adverse effects, and long-term safety data with newly developed vectors are eagerly awaited. The prevalent inclusion of men in randomized clinical trials (RCTs) with subsequent extrapolation of results to women needs to be addressed, as reinforcing sex-neutral claims into COVID-19 research may insidiously lead to increased inequities in health care. The huge worldwide effort with over 3000 ongoing RCTs of pharmacological agents should focus on improving knowledge on sex, gender and age as pillars of individual variation in drug responses and enforce appropriateness.
Project description:Drug resistant epilepsy is a disorder involving widespread brain network alterations. Recently, many groups have reported neuroimaging and electrophysiology network analysis techniques to aid medical management, support presurgical planning, and understand postsurgical seizure persistence. While these approaches may supplement standard tests to improve care, they are not yet used clinically or influencing medical or surgical decisions. When will this change? Which approaches have shown the most promise? What are the barriers to translating them into clinical use? How do we facilitate this transition? In this review, we will discuss progress, barriers, and next steps regarding the integration of brain network analysis into the medical and presurgical pipeline.
Project description:The limitations and difficulties that nerve autografts create in normal nerve function recovery after injury is driving research towards using smart materials for next generation nerve conduits (NCs) setup. Here, the new polymer partially oxidized polyvinyl alcohol (OxPVA) was assayed to verify its future potential as a bioactivated platform for advanced/effective NCs. OxPVA-patterned scaffolds (obtained by a 3D-printed mold) with/without biochemical cues (peptide IKVAV covalently bound (OxPVA-IKVAV) or self-assembling peptide EAK (sequence: AEAEAKAKAEAEAKAK), mechanically incorporated (OxPVA+EAK) versus non-bioactivated scaffold (peptide-free OxPVA (PF-OxPVA) supports, OxPVA without IKVAV and OxPVA without EAK control scaffolds) were compared for their biological effect on neuronal SH-SY5Y cells. After cell seeding, adhesion/proliferation, mediated by (a) precise control over scaffolds surface ultrastructure; (b) functionalization efficacy guaranteed by bioactive cues (IKVAV/EAK), was investigated by MTT assay at 3, 7, 14 and 21 days. As shown by the results, the patterned groove alone stimulates colonization by cells; however, differences were observed when comparing the scaffold types over time. In the long period (21 days), patterned OxPVA+EAK scaffolds distinguished in bioactivity, assuring a significantly higher total cell amount than the other groups. Experimental evidence suggests patterned OxPVA-EAK potential for NCs device fabrication.
Project description:Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30-50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Project description:Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Project description:The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo-enzyme DprE1, decaprenylphosphoryl-beta-D-ribose 2-epimerase. Here, we synthesized a new series of piperazine-containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical candidate PBTZ169 binds covalently to DprE1. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Compared to BTZ043, PBTZ169 has improved potency, safety and efficacy in zebrafish and mouse models of tuberculosis (TB). When combined with other TB drugs, PBTZ169 showed additive activity against M. tuberculosis in vitro except with bedaquiline (BDQ) where synergy was observed. A new regimen comprising PBTZ169, BDQ and pyrazinamide was found to be more efficacious than the standard three drug treatment in a murine model of chronic disease. PBTZ169 is thus an attractive drug candidate to treat TB in humans.