Unknown

Dataset Information

0

Accelerating All-Atom Simulations and Gaining Mechanistic Understanding of Biophysical Systems through State Predictive Information Bottleneck.


ABSTRACT: An effective implementation of enhanced sampling algorithms for molecular dynamics simulations requires a priori knowledge of the approximate reaction coordinate describing the relevant mechanisms in the system. In this work, we focus on the recently developed artificial intelligence-based State Predictive Information Bottleneck (SPIB) approach and demonstrate how SPIB can learn such a reaction coordinate as a deep neural network even from undersampled trajectories. We exemplify its usefulness by achieving more than 40 times acceleration in simulating two model biophysical systems through well-tempered metadynamics performed by biasing along the SPIB-learned reaction coordinate. These include left- to right-handed chirality transitions in a synthetic helical peptide (Aib)9 and permeation of a small benzoic acid molecule through a synthetic, symmetric phospholipid bilayer. In addition to significantly accelerating the dynamics and achieving back and forth movement between different metastable states, the SPIB-based reaction coordinate gives mechanistic insights into the processes driving these two important problems.

SUBMITTER: Mehdi S 

PROVIDER: S-EPMC9297332 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4586851 | biostudies-literature
| S-EPMC7514526 | biostudies-literature
| S-EPMC6851450 | biostudies-literature
| S-EPMC11005038 | biostudies-literature
| S-EPMC10724417 | biostudies-literature
| S-EPMC6637970 | biostudies-literature
| S-EPMC9120447 | biostudies-literature
| S-EPMC9806839 | biostudies-literature
| S-EPMC10369960 | biostudies-literature
| S-EPMC7271963 | biostudies-literature