PPE detector: a YOLO-based architecture to detect personal protective equipment (PPE) for construction sites.
Ontology highlight
ABSTRACT: With numerous countermeasures, the number of deaths in the construction industry is still higher compared to other industries. Personal Protective Equipment (PPE) is constantly being improved to avoid these accidents, although workers intentionally or unintentionally forget to use such safety measures. It is challenging to manually run a safety check as the number of co-workers on a site can be large; however, it is a prime duty of the authority to provide maximum protection to the workers on the working site. From these motivations, we have created a computer vision (CV) based automatic PPE detection system that detects various types of PPE. This study also created a novel dataset named CHVG (four colored hardhats, vest, safety glass) containing eight different classes, including four colored hardhats, vest, safety glass, person body, and person head. The dataset contains 1,699 images and corresponding annotations of these eight classes. For the detection algorithm, this study has used the You Only Look Once (YOLO) family's anchor-free architecture, YOLOX, which yields better performance than the other object detection models within a satisfactory time interval. Moreover, this study found that the YOLOX-m model yields the highest mean average precision (mAP) than the other three versions of the YOLOX.
Project description:We modeled the stability of SARS-CoV-2 on personal protective equipment (PPE) commonly worn in hospitals when carrying out high-risk airway procedures. Evaluated PPE included the visors and hoods of two brands of commercially available powered air purifying respirators, a disposable face shield, and Tyvek coveralls. Following an exposure to 4.3 log10 plaque-forming units (PFUs) of SARS-CoV-2, all materials displayed a reduction in titer of > 4.2 log10 by 72 hours postexposure, with detectable titers at 72 hours varying by material (1.1-2.3 log10 PFU/mL). Our results highlight the need for proper doffing and disinfection of PPE, or disposal, to reduce the risk of SARS-CoV-2 contact or fomite transmission.
Project description:Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Project description:The COVID-19 pandemic resulted in many supply chain issues, including crippling of essential personal protective equipment (PPE) needed for high-risk occupations such as those in healthcare. As a result of these supply chain issues, unprecedented crisis capacity strategies were implemented to divert PPE items such as filtering facepiece respirators (FFRs, namely N95s) to those who needed them most for protection. Large-scale methods for decontamination were used throughout the world to preserve these items and provided for their extended use. The general public also adopted the use of non-specialized protective equipment such as face coverings. So, the need for cleaning, decontamination, or disinfection of these items in addition to normal clothing items became a necessary reality. Some items could be laundered, but other items were not appropriate for washing/drying. To fill research gaps in small-scale, non-commercial cleaning and disinfection, this bench-scale research was conducted using small coupons (swatches) of multiple PPE/barrier protection materials inoculated with virus (non-pathogenic bacteriophages Phi6 and MS2) and tested against a range of decontamination methods including bleach-, alcohol- and quaternary ammonium compound (QAC)-based liquid sprays, as well as low concentration hydrogen peroxide vapor (LCHPV) and bench-scale laundering. In general, non-porous items were easier to disinfect than porous items, and the enveloped virus Phi6 was overall easier to inactivate than MS2. Multiple disinfection methods were shown to be effective in reducing viral loads from PPE coupons, though only laundering and LCHPV were effective for all materials tested that were inoculated with Phi6. Applications of this and follow-on full-scale research are to provide simple effective cleaning/disinfection methods for use during the current and future pandemics.
Project description:PurposeIn the absence of vaccine, proper use of personal protective equipment (PPE) is the most important strategy to protect healthcare workers against COVID-19 infection. The recommendations on pharmacological prophylaxis against COVID-19 infection are controversial. The aim of current study was to assess PPE practices during surgery on COVID-19 negative gynecological cancer patients and use of pharmacologic prophylaxis by clinicians practicing gynecologic oncology.MethodsWe disbursed a survey questionnaire through various social media platforms among clinicians practicing gynecologic oncology. The survey consisted of 37 questions divided into five subgroups evaluating demographic details, use of pharmacological prophylaxis against COVID-19, preoperative COVID-19 screening protocol, details on PPE usage and associated discomfort, if any.ResultsTwo hundred twenty oncologists from 13 countries responded to the survey. Pharmacological prophylaxis was being used by 85 (38.6%) respondents; most common agent was hydroxychloroquin (HCQ) by 24.5% respondents. Routine preoperative screening for COVID-19 was performed by 214 (97.3%) respondents. Some degree of discomfort during surgery due to PPE use was reported by 170 (77.3%) respondents, which was moderate to severe in 73 (33.2%) respondents. Most common difficulties associated with face mask/shield were problems in communication (69.5%) and breathing (58.1%). Eye protection was associated with poor visibility, fogging and headache. Unusual fatigue attributed to PPE use was experienced by 143(65%) respondents.ConclusionUse of pharmacological prophylaxis against COVID-19 is controversial and the same is reflected in our survey. Most respondents adhered to PPE use despite experiencing some physical discomfort.Supplementary informationThe online version contains supplementary material available at 10.1007/s40944-021-00500-4.
Project description:Background270 million workplace accidents occur annually. In Uganda, Kampala district has the highest workplace injury and fatality rates. However, information on personal protective equipment (PPE)-hand gloves, hardhats, overalls, safety boots, earplugs, safety harness with lanyard, and face shields-utilization among building construction workers remains scarce. We assessed PPE utilization and determinants among building construction workers in Kampala, Uganda.MethodsThis cross-sectional study involved 385 respondents. Data collected by structured questionnaire was double-entered in EpiData and analyzed in STATA at 5% significance level. Independent determinants of PPE use were established by a stepwise backward logistic regression analysis.Results305 (79.2%) respondents were males, 290 (75.3%) were 18-30 years, 285 (74.0%) completed secondary education, and 197 (51.2%) were temporary employees. 60 (15.6%) respondents used PPE. Female sex (adjusted odds ratio (AOR) = 6.64; 95% CI: 1.55-28.46; P = 0.011), temporary (AOR = 0.05; 95% CI: 0.01-0.27; P < 0.001) and casual (AOR = 0.01; 95% CI: 0.001-0.071; P < 0.001) employment, and previous knowledge of safety measures (AOR = 100.72; 95% CI: 26.00-390.16; P < 0.001) were associated with PPE use.ConclusionPPE use was low in Kampala, Uganda. Building construction companies should implement measures of the Uganda Occupational Health and Safety Act.
Project description:The COVID-19 pandemic led to a still ongoing international health and sanity crisis. In the current scenario, the actions taken by the national authorities and the public prioritized measures to control the transmission of the virus, such as social distancing, and face mask-wearing. Unfortunately, due to the debilitated waste management systems and incorrect disposal of single-use face masks and other types of personal protective equipment (PPE), the occurrence of these types of items has led to the exacerbation of marine plastic pollution. Although various studies have focused on surveying marine coasts for PPE pollution, studies on inland water are largely lacking. In order to fill this knowledge gap, the present study assessed PPE pollution in the Iranian coast of the Caspian Sea, the largest enclosed inland water body in the world by following standard monitoring procedures. The results concerning the density (1.02 × 10-4 PPE/m2) composition (face masks represented 95.3% of all PPE) of PPE are comparable to previous studies in marine waters. However, a notable decrease in the occurrence of PPE was observed, probably to behavioral and seasonality reasons. The possible consequences of PPE pollution were discussed, although much more research is needed regarding the ecotoxicological aspects of secondary PPE contaminants, such as microplastics and chemical additives. It is expected that face mask mandates will be eventually halted, and PPE will stop being emitted to the environment. However, based on the lessons learned from the COVID-19 scenario, several recommendations for coastal solid waste management are provided. These are proposed to serve during and after the pandemic.
Project description:The use and disposal of face masks, gloves, face shields, and other types of personal protective equipment (PPE) have increased dramatically due to the ongoing COVID-19 pandemic. Many governments enforce the use of PPE as an efficient and inexpensive way to reduce the transmission of the virus. However, this may pose a new challenge to solid waste management and exacerbate plastic pollution. The aim of the present study was to report the occurrence and distribution of COVID-19-associated PPE along the coast of the overpopulated city of Lima, Peru, and determine the influence of the activities carried out in each study site. In general terms, 138 PPE items were found in 11 beaches during 12 sampling weeks. The density was in the range of 0 to 7.44 × 10-4 PPE m-2. Microplastic release, colonization of invasive species, and entanglement or ingestion by apex predators are some of the potential threats identified. Recreational beaches were the most polluted sites, followed by surfing, and fishing sites. This may be because recreational beaches are many times overcrowded by beachgoers. Additionally, most of the PPE was found to be discarded by beachgoers rather than washed ashore. The lack of environmental awareness, education, and coastal mismanagement may pose a threat to the marine environment through marine litter and plastic pollution. Significant efforts are required to shift towards a sustainable solid waste management. Novel alternatives involve redesigning masks based on degradable plastics and recycling PPE by obtaining liquid fuels through pyrolysis.
Project description:Pandemics and re-emerging diseases put pressure on the health care system to prepare for patient care and sample logistics requiring enhanced personnel protective equipment (PPE) for health care workers. We generated quantifiable data on ergonomics of PPE applicable in a health care setting by defining error rates and physically limiting factors due to PPE-induced restrictions. Nineteen study volunteers tested randomly allocated head- or full body-ventilated PPE suits equipped with powered-air-purifying-respirators and performed four different tasks (two laboratory tutorials, a timed test of selective attention and a test investigating reaction time, mobility, speed and physical exercise) during 6 working hours at 22°C on one day and 4 working hours at 28°C on another day. Error rates and physical parameters (fluid loss, body temperature, heart rate) were determined and ergonomic-related parameters were assessed hourly using assessment sheets. Depending on the PPE system the most restrictive factors, which however had no negative impact on performance (speed and error rate), were: reduced dexterity due to multiple glove layers, impaired visibility by flexible face shields and back pain related to the respirator of the fully ventilated suit. Heat stress and liquid loss were perceived as restrictive at a working temperature of 28°C but not 22°C.
Project description:ObjectivesTo assess prevalence of Personal Protective Equipment (PPE)-related symptoms and adverse reactions during Coronavirus Disease 2019 pandemics.MethodsWe conducted an observational study among people exposed to various degree of infectious risk. Data were collected with a self-administered online questionnaire.ResultsThe entire cohort complained about a wide range of adverse reactions: respiratory symptoms affected 80.3% of respondents, 68.5% referred pressure-related skin lesions, fewer manifested a dermatosis of different grade or ocular symptoms. Most of the affected individuals belonged to healthcare staff and manifestations were predicted by wearing time (more than 6 h/d). Moreover, symptoms were higher in the healthcare staff wearing N95/FFP2 respirator mask.ConclusionsGiven the crucial role of PPE to contain the pandemic infection, more attention has to be paid to exposed categories, establishing preventive measure of side effects to ensure total safety.
Project description:Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.