Project description:Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ?500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.
Project description:Inbreeding causes increases in homozygosity and is commonly associated with reductions in fertility and embryogenesis. Although the mechanisms underlying such effects are unknown, recent work has suggested that inbred males may suffer impaired ejaculate quality, thus providing a functional explanation for reductions in reproductive function in inbred populations. However, the relationship between inbreeding and sperm quality remains controversial, particularly in wild populations where the level of inbreeding is typically estimated using neutral molecular markers. Such markers are thought to reflect genome-wide levels of heterozygosity only under restricted conditions, and rarely in outbred populations. Here we employ a comparative approach that takes account of these criticisms and evaluates the evidence linking inbreeding to reductions in sperm quality in 20 mammal species. We focus on sperm abnormalities and sperm motility, which are key determinants of male fertility in many species. We show that species with reduced mean heterozygosity have impaired ejaculated quality, although subsequent analyses revealed that these effects were confined to endangered populations. Our findings therefore support the notion that inbreeding can severely impair sperm quality while concomitantly addressing criticisms surrounding the use of heterozygosity estimates to estimate the level of inbreeding.
Project description:Mutations in the EDA gene cause anhidrotic/hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair, sweat glands, and teeth in humans and in a mouse model, "Tabby" (Ta). The gene encodes ectodysplasin, a TNF ligand family member that activates the NF-kappaB-signaling pathway, but downstream targets and the mechanism of skin appendage formation have been only partially analyzed. Comparative transcription profiling of embryonic skin during hair follicle development in WT and Ta mice identified critical anhidrotic/hypohidrotic ectodermal dysplasia (EDA) effectors in four pathways, three already implicated in follicle formation. They included Shh and its effectors, as well as antagonists for the Wnt (Dkk4) and BMP (Sostdc1) pathways. The fourth pathway was unexpected, a variant NF-kappaB-signaling cascade based on lymphotoxin-beta (LTbeta)/RelB. Previously known to participate only in lymphoid organogenesis, LTbeta was enriched in developing hair follicles of WT but not in Ta mice. Furthermore, in mice lacking LTbeta, all three types of mouse hair were still formed, but all were structurally abnormal. Guard hairs became wavy and irregular, zigzag/auchen hairs lost their kinks, and in a phenocopy of features of Ta animals, the awl hairs doubled in number and were characteristically distorted and pinched. LTbeta-null mice that received WT bone marrow transplants maintained mutant hair phenotypes, consistent with autonomous LTbeta action in skin independent of its expression in lymphoid cells. Thus, as an EDA target, LTbeta regulates the form of hair in developing hair follicles; and when EDA is defective, failure of LTbeta activation can account for part of the Ta phenotype.
Project description:The synthesis of most proteins begins at AUG codons, yet a small number of non-AUG initiated proteoforms are also known. Here we analyse a large number of publicly available Ribo-seq datasets to identify novel, previously uncharacterised non-AUG proteoforms using Trips-Viz implementation of a novel algorithm for detecting translated ORFs. In parallel we analyse genomic alignment of 120 mammals to identify evidence of protein coding evolution in sequences encoding potential extensions. Unexpectedly we find that the number of non-AUG proteoforms identified with ribosome profiling data greatly exceeds those with strong phylogenetic support suggesting their recent evolution. Our study argues that the protein coding potential of human genome greatly exceeds that detectable through comparative genomics and exposes the existence of multiple proteins encoded by the same genomic loci.
Project description:BackgroundIn mammals, contrary to what is usually assumed, recent evidence suggests that synonymous mutations may not be selectively neutral. This position has proven contentious, not least because of the absence of a viable mechanism. Here we test whether synonymous mutations might be under selection owing to their effects on the thermodynamic stability of mRNA, mediated by changes in secondary structure.ResultsWe provide numerous lines of evidence that are all consistent with the above hypothesis. Most notably, by simulating evolution and reallocating the substitutions observed in the mouse lineage, we show that the location of synonymous mutations is non-random with respect to stability. Importantly, the preference for cytosine at 4-fold degenerate sites, diagnostic of selection, can be explained by its effect on mRNA stability. Likewise, by interchanging synonymous codons, we find naturally occurring mRNAs to be more stable than simulant transcripts. Housekeeping genes, whose proteins are under strong purifying selection, are also under the greatest pressure to maintain stability.ConclusionTaken together, our results provide evidence that, in mammals, synonymous sites do not evolve neutrally, at least in part owing to selection on mRNA stability. This has implications for the application of synonymous divergence in estimating the mutation rate.
Project description:Hemotropic Mycoplasma spp. (hemoplasmas) are uncultivable bacteria that infect mammals, including humans. We detected a potentially novel hemoplasma species in blood samples from wild river dolphins in the Amazon River Basin, Brazil. Further investigation could determine pathogenicity and zoonotic potential of the detected hemoplasma.
Project description:The highly conserved ectodysplasin A (EDA)/EDA receptor signaling pathway is critical during development for the formation of skin appendages. Mutations in genes encoding components of the EDA pathway disrupt normal appendage development, leading to the human disorder hypohidrotic ectodermal dysplasia. Spontaneous mutations in the murine Eda (Tabby) phenocopy human X-linked hypohidrotic ectodermal dysplasia. Little is known about the role of EDA signaling in adult skin homeostasis or repair. Because wound healing largely mimics the morphogenic events that occur during development, we propose a role for EDA signaling in adult wound repair. Here we report a pronounced delay in healing in Tabby mice, demonstrating a functional role for EDA signaling in adult skin. Moreover, pharmacological activation of the EDA pathway in both Tabby and wild-type mice significantly accelerates healing, influencing multiple processes including re-epithelialization and granulation tissue matrix deposition. Finally, we show that the healing promoting effects of EDA receptor activation are conserved in human skin repair. Thus, targeted manipulation of the EDA/EDA receptor pathway has clear therapeutic potential for the future treatment of human pathological wound healing.
Project description:To find developmental stage specific genes controled by EDA Keywords: development or differentiation design,genetic modification design
Project description:BackgroundThe common loon (Gavia immer) is one of five species that comprise the avian order Gaviiformes. Loons are specialized divers, reaching depths up to 60 m while staying submerged for intervals up to three minutes. In this study we used comparative genomics to investigate the genetic basis of the common loon adaptations to its ecological niche. We used Illumina short read DNA sequence data from a female bird to produce a draft assembly of the common loon (Gavia immer) genome.ResultsWe identified 14,169 common loon genes, which based on well-resolved avian genomes, represent approximately 80.7% of common loon genes. Evolutionary analyses between common loon and Adelie penguin (Pygoscelis adeliae), red-throated loon (Gavia stellata), chicken (Gallus gallus), northern fulmar (Fulmarus glacialis), and rock pigeon (Columba livia) show 164 positively selected genes in common and red-throated loons. These genes were enriched for a number of protein classes, including those involved in muscle tissue development, immunoglobulin function, hemoglobin iron binding, G-protein coupled receptors, and ATP metabolism.ConclusionsSignatures of positive selection in these areas suggest the genus Gavia may have adapted for underwater diving by modulating their oxidative and metabolic pathways. While more research is required, these adaptations likely result in (1) compensations in oxygen respiration and energetic metabolism, (2) low-light visual acuity, and (3) elevated solute exchange. This work represents the first effort to understand the genomic adaptations of the common loon as well as other Gavia and may have implications for subsequent studies that target particular genes for loon population genetic, ecological or conservation studies.