Project description:Background: The overall frequency of cranial nerve pathology, including cranial nerves other than the trigeminal nerve, as well as its relation to brainstem lesion formation on magnetic resonance imaging (MRI) and clinical correlates in multiple sclerosis (MS) is unknown. Objective: We aimed to determine the frequency of cranial nerve enhancement on MRI, and its association with brainstem lesion formation and clinical outcomes. Methods: We retrospectively analyzed, in 183 patients, (RRMS: 156, SPMS: 15, PPMS: 6, CIS: 6) 651 MRIs (76.5% on the identical scanner Siemens Trio Tim, 3T with identical MRI protocols). Frequencies of cranial nerve enhancement on post contrast T1-weighted MRIs were compared to lesion counts and the MS-severity-score. Results: Cranial nerve enhancement was present in 8.2% of the analyzed MS patients (oculomotor-nerve: 1.1%, trigeminal-nerve: 2.7%, abducens-nerve: 2.2%, facial-/vestibulocochlear nerve: 1.6%, vagal-nerve: 0.5%). Of those, 13% suffered from repeated episodes and 27% exhibited a cranial nerve enhancement duration of >12 months. Age at MS onset was lower in patients with cranial nerve enhancement, 23 vs. 28 years, p = 0.049. The MS-severity-score, 5.15 vs. 0.88 (p = 0.019), the T2 brainstem-, 1 vs. 0 (p = 0.041), and the total intracranial contrast-enhancing lesion counts, 2 vs. 0 (p = 0.000), were higher in patients with cranial nerve enhancement, compared to age-, disease duration-, and gender- matched MS patients. Conclusions: Cranial nerve enhancement, present in 8.2% of our patients, was associated with a younger age at MS onset, brainstem lesions, and a more severe disease course.
Project description:Drainage of interstitial fluid and solutes from the brainstem has not been well studied. To map one drainage pathway in the human brainstem, we took advantage of the focal blood-brain barrier disruption occurring in a multiple sclerosis brainstem lesion, coupled with intravenous injection of gadolinium, which simulates an intraparenchymal injection of gadolinium tracer within the restricted confines of this small brain region. Using high-resolution MRI, we show how it is possible for interstitial fluid to drain into the adjacent trigeminal and oculomotor nerves, in keeping with a pathway of communication between the extracellular spaces of the brainstem and cranial nerve parenchyma.
Project description:Paget's disease of bone (PDB) is a progressive monostotic or polyostotic osteopathy with unknown cause. It is associated with the involvement of the nervous system. The cranial nerves, spinal roots, cauda equina, spinal cord, and brain can be affected in PDB due to their close anatomical relation to bone. Hearing loss occurs in 12%-50% of patients with PDB. The optic nerve can be affected at the optic canal. The diagnosis of PDB is radiological by highlighting characteristic lesions like thickening of the cortical bone, hypertrophic and fibrillary bones. Progressive or chronic neurological deficits should be treated with bisphosphonates. We present a rare case of multiple cranial nerve palsies as the first manifestation of PDB.
Project description:Third nerve palsy (3NP) commonly results from a microvascular ischemic insult. Typically, computed tomography or magnetic resonance angiography is performed to rule out a posterior communicating artery aneurysm. If this is normal and the pupil is spared, patients are often observed with the expectation of spontaneous improvement within 3 months. Oculomotor nerve enhancement on MRI with contrast in the context of microvascular 3NP is not well recognized. Here, we report third nerve enhancement in a case of a 67-year-old woman with diabetes and other vascular risk factors who presented with left eye ptosis and a limitation of extraocular eye movements consistent with 3NP. She underwent an extensive inflammatory workup that was negative and the diagnosis of a microvascular 3NP was made. A spontaneous recovery was achieved within 3 months, and she did not receive any treatment. She remained clinically well, although increased T2 signal in the oculomotor nerve persisted after 10 months. While the exact mechanism remains unknown, it is likely that microvascular ischemic insults lead to intrinsic changes of the third nerve that may result in enhancement and persistent T2 signal. Additional workup for inflammatory causes of 3NP may not be required when enhancement of the oculomotor nerve is seen in the right clinical context. Further study is required to understand why enhancement is a rarely reported finding in patients with microvascular ischemic 3NP.
Project description:AimTo investigate the genetic findings and phenotypic characteristics of a Chinese family with Norrie disease (ND).MethodsMolecular genetic analysis and clinical examinations were performed on a Chinese family with ND. Mutations in the Norrie disease pseudoglioma (NDP) gene were detected by direct sequencing. Haplotypes were constructed and compared with the phenotypes in the family. Evolutionary comparisons and mutant open reading frame (ORF) prediction were also undertaken.ResultsTwo family members with ocular manifestations were diagnosed with ND. No signs of sensorineural hearing loss were observed in either patient, while one of them showed signs of mild mental retardation. A novel heterozygous mutation in the NDP gene, c.-1_2delAAT, was detected in both patients. The mutation and the mutation bearing haplotype co-segregated with the ND phenotype in males and was transmitted from their mothers and/or grandmothers (II:2). The male without ND did not harbor the mutation. The mutation occurred at the highly conserved nucleotides. ORF finder predicted that the mutation would lead to the production of a truncated protein that lacks the first 11 N-terminal amino acids.ConclusionA novel mutation, c.-1_2delAAT in the NDP gene, was identified in a Chinese family with ND. This mutation caused ND without obvious sensorineural hearing loss. Mental disorder was found in one but not the other patients. The clinical heterogeneity in the family indicated that other genetic variants and epigenetic factors may also play a role in the disease presentation.
Project description:Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varying T 1 weighting. (2) Generation of semi-quantitative T1* maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%. In-vivo results show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40-60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.
Project description:ObjectiveRetinoschisis and Norrie disease are X-linked recessive retinal disorders caused by mutations in RS1 and NDP genes respectively. Both are likely to be monogenic and no locus heterogeneity has been reported. However, there are reports showing overlapping features of Norrie disease and retinoschisis in a NDP knock-out mouse model and also the involvement of both the genes in retinoschisis patients. Yet, the exact molecular relationships between the two disorders have still not been understood. The study investigated the association between retinoschisin (RS1) and norrin (NDP) using in vitro and in silico approaches. Specific protein-protein interaction between RS1 and NDP was analyzed in human retina by co-immunoprecipitation assay and MALDI-TOF mass spectrometry. STRING database was used to explore the functional relationship.ResultCo-immunoprecipitation demonstrated lack of a direct interaction between RS1 and NDP and was further substantiated by mass spectrometry. However, STRING revealed a potential indirect functional association between the two proteins. Progressively, our analyses indicate that FZD4 protein interactome via PLIN2 as well as the MAP kinase signaling pathway to be a likely link bridging the functional relationship between retinoschisis and Norrie disease.
Project description:We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the globe in adduction related to the innervation of the lateral rectus by the III nerve causing co-contraction in adduction. Clinical features that may be of concern in adulthood may not be relevant in childhood; whereas the presence of mydriasis in III palsy suggests a compressive aetiology in adults, this is not the case in children. However, the frequency of associated CNS abnormalities in III palsy and the risk of tumour in VI palsy can be indications for early neuroimaging depending on presenting features elicited through a careful history and clinical examination. The latter should include the neighbouring cranial nerves. We discuss the impact of our evolving knowledge of congenital cranial dysinnervation syndromes on this field.
Project description:BackgroundLate gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD).ObjectivesThe authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD).MethodsPatients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD.ResultsOf 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell's C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell's C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models.ConclusionsComprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in implantable cardioverter-defibrillator (ICD) insertion guidelines. These results signify the potential for a more personalized approach to determining ICD candidacy in CAD.
Project description:BackgroundLate gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for noninvasive myocardial tissue characterization but requires intravenous contrast agent administration. It is highly desired to develop a contrast agent-free technology to replace LGE for faster and cheaper CMR scans.MethodsA CMR virtual native enhancement (VNE) imaging technology was developed using artificial intelligence. The deep learning model for generating VNE uses multiple streams of convolutional neural networks to exploit and enhance the existing signals in native T1 maps (pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, presenting them as LGE-equivalent images. The VNE generator was trained using generative adversarial networks. This technology was first developed on CMR datasets from the multicenter Hypertrophic Cardiomyopathy Registry, using hypertrophic cardiomyopathy as an exemplar. The datasets were randomized into 2 independent groups for deep learning training and testing. The test data of VNE and LGE were scored and contoured by experienced human operators to assess image quality, visuospatial agreement, and myocardial lesion burden quantification. Image quality was compared using a nonparametric Wilcoxon test. Intra- and interobserver agreement was analyzed using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were compared using linear regression and ICC.ResultsA total of 1348 hypertrophic cardiomyopathy patients provided 4093 triplets of matched T1 maps, cines, and LGE datasets. After randomization and data quality control, 2695 datasets were used for VNE method development and 345 were used for independent testing. VNE had significantly better image quality than LGE, as assessed by 4 operators (n=345 datasets; P<0.001 [Wilcoxon test]). VNE revealed lesions characteristic of hypertrophic cardiomyopathy in high visuospatial agreement with LGE. In 121 patients (n=326 datasets), VNE correlated with LGE in detecting and quantifying both hyperintensity myocardial lesions (r=0.77-0.79; ICC=0.77-0.87; P<0.001) and intermediate-intensity lesions (r=0.70-0.76; ICC=0.82-0.85; P<0.001). The native CMR images (cine plus T1 map) required for VNE can be acquired within 15 minutes and producing a VNE image takes less than 1 second.ConclusionsVNE is a new CMR technology that resembles conventional LGE but without the need for contrast administration. VNE achieved high agreement with LGE in the distribution and quantification of lesions, with significantly better image quality.