Project description:BackgroundIntellectual disability with developmental delay is the most common developmental disorder. However, this diagnosis is rarely associated with congenital cardiomyopathy. In the current report, we present the case of a patient suffering from dilated cardiomyopathy and developmental delay.MethodsNeurological pathology in a newborn was diagnosed immediately after birth, and the acquisition of psychomotor skills lagged behind by 3-4 months during the first year of life. WES analysis of the proband did not reveal a causal variant, so the search was extended to trio.ResultsTrio sequencing revealed a de novo missense variant in the CAMK2D gene (p.Arg275His), that is, according to the OMIM database and available literature, not currently associated with any specific inborn disease. The expression of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) protein is known to be increased in the heart tissues from patients with dilated cardiomyopathy. The functional effect of the CaMKIIδ Arg275His mutant was recently reported; however, no specific mechanism of its pathogenicity was proposed. A structural analysis and comparison of available three-dimensional structures of CaMKIIδ confirmed the probable pathogenicity of the observed missense variant.ConclusionsWe suggest that the CaMKIIδ Arg275His variant is highly likely the cause of dilated cardiomyopathy and neurodevelopmental disorders.
Project description:Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.
Project description:We report here a de novo missense variant in HIST1H4J resulting in a complex syndrome combining growth delay, microcephaly and intellectual disability. Trio whole exome sequencing (WES) revealed that the proband was heterozygous for a de novo c.274 A > G p.(K91E) variant in HIST1H4J, a gene not yet associated with human disease. The patient presented with profound intellectual disability, microcephaly, and dysmorphic facial features. Functional consequences of the identified de novo missense variant were evaluated in zebrafish embryos, where they affected general development, especially resulting in defective head organs and reduced body axis length. Our results show that the monoallelic p.K91E substitution on HIST1H4J underlies a human syndrome that is genetically and phenotypically akin to the HIST1H4C-associated neurodevelopmental disorder resulting from p.K91A and p.K91Q substitions in HIST1H4C. The highly overlapping patient phenotypes highlight functional similarities between HIST1H4J and HIST1H4C perturbations, establishing the singular importance of K91 across histone H4 genes for vertebrate development.
Project description:Heterozygous variants in bromodomain and plant homeodomain containing transcription factor (BPTF) cause the neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) syndrome (MIM#617755) characterized by intellectual disability, speech delay and postnatal microcephaly. BPTF functions within nucleosome and remodeling factor (NURF), a complex comprising sucrose non-fermenting like (SNF2L), an Imitation SWItching (ISWI) chromatin remodeling protein encoded by the SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 (SMARCA1) gene. Surprisingly, ablation of Smarca1 resulted in mice with enlarged brains, a direct contrast to the phenotype of NEDDFL patients. To model the NEDDFL syndrome, we generated forebrain-specific Bptf knockout (Bptf conditional Knockout (cKO)) mice. The Bptf cKO mice were born in normal Mendelian ratios, survived to adulthood but were smaller in size with severe cortical hypoplasia. Prolonged progenitor cell cycle length and a high incidence of cell death reduced the neuronal output. Cortical lamination was also disrupted with reduced proportions of deep layer neurons, and neuronal maturation defects that impaired the acquisition of distinct cell fates (e.g. COUP-TF-interacting protein 2 (Ctip2)+ neurons). RNAseq and pathway analysis identified altered expression of fate-determining transcription factors and the biological pathways involved in neural development, apoptotic signaling and amino acid biosynthesis. Dysregulated genes were enriched for MYC Proto-Oncogene, BHLH Transcription Factor (Myc)-binding sites, a known BPTF transcriptional cofactor. We propose the Bptf cKO mouse as a valuable model for further study of the NEDDFL syndrome.
Project description:Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.
Project description:In eukaryotes, the elongation phase of transcription by RNA polymerase II (RNAP II) is regulated by the transcription elongation factor b (P-TEFb), composed of Cyclin-T1 and cyclin-dependent kinase 9. The release of RNAP II is mediated by phosphorylation through P-TEFb that in turn is under control by the inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex. The 7SK snRNP consists of the 7SK non-coding RNA and the proteins MEPCE, LARP7, and HEXIM1/2. Biallelic LARP7 loss-of-function variants underlie Alazami syndrome characterized by growth retardation and intellectual disability. We report a boy with global developmental delay and seizures carrying the de novo MEPCE nonsense variant c.1552?C?>?T/p.(Arg518*). mRNA and protein analyses identified nonsense-mediated mRNA decay to underlie the decreased amount of MEPCE in patient fibroblasts followed by LARP7 and 7SK snRNA downregulation and HEXIM1 upregulation. Reduced binding of HEXIM1 to Cyclin-T1, hyperphosphorylation of the RNAP II C-terminal domain, and upregulated expression of ID2, ID3, MRPL11 and snRNAs U1, U2 and U4 in patient cells are suggestive of enhanced activation of P-TEFb. Flavopiridol treatment and ectopic MEPCE protein expression in patient fibroblasts rescued increased expression of six RNAP II-sensitive genes and suggested a possible repressive effect of MEPCE on P-TEFb-dependent transcription of specific genes.
Project description:PurposeWe aimed to elucidate the underlying disease in a Hungarian family, with only one affected family member, a 16-year-old male Hungarian patient, who developed global developmental delay, cognitive impairment, behavioral problems, short stature, intermittent headaches, recurrent dizziness, strabismus, hypermetropia, complex movement disorder and partial pituitary dysfunction. After years of detailed clinical investigations and careful pediatric care, the exact diagnosis of the patient and the cause of the disease was still unknown.MethodsWe aimed to perform whole exome sequencing (WES) in order to investigate whether the affected patient is suffering from a rare monogenic disease.ResultsUsing WES, we identified a novel, de novo frameshift variant (c.1902dupG, p.Ala636SerfsTer12) of the catenin beta-1 (CTNNB1) gene. Assessment of the novel CTNNB1 variant suggested that it is a likely pathogenic one and raised the diagnosis of CTNNB1 neurodevelopmental disorder (OMIM 615,075).ConclusionsOur manuscript may contribute to the better understanding of the genetic background of the recently discovered CTNNB1 neurodevelopmental disorder and raise awareness among clinicians and geneticists. The affected Hungarian family demonstrates that based on the results of the clinical workup is difficult to establish the diagnosis and high-throughput genetic screening may help to solve these complex cases.
Project description:BackgroundNext-generation sequencing has been invaluable to delineate the genetic etiology of neurodevelopmental disorders (NDDs) in recent years. BCL11B, encoding Cys2 His2 zinc finger transcription factor, is essential for the development of immune and neural systems.MethodsHerein, we describe a Chinese girl presenting craniofacial abnormalities, developmental delay and intellectual disability with speech impairment. Exomes of genes were enriched with the Agilent SureSelect QXT ALL Human Exon V6 kit and sequenced on Illumina Hiseq 2500 platform.ResultsAfter variants filtering and annotation, we identified a de novo heterozygous 11bp frameshift mutation NM_138576.4: c.2190_2200delGGACGCACGAC (p.Thr730Thrfs*151) in exon 4 of BCL11B, which is expected to escape nonsense-mediated mRNA decay and probably result in a truncated protein with lack of the C-terminal DNA-binding zinc-finger domains.ConclusionThis is the first report of NDD caused by a BCL11B variant in a Chinese population. The mutation identified in this report broadens the knowledge of mutation spectrum of BCL11B and might help in genetic counseling and reducing reproductive risk.
Project description:As a result of exome-based sequencing work performed by the DDD study, de novo variants in CNOT3 have emerged as a newly recognised cause of a developmental disorder. This paper describes molecular and clinical details of 16 probands with developmental disorders and de novo CNOT3 variants. It is the first such description of the developmental phenotype associated with CNOT3 variants. Eight of these cases were discovered as part of the DDD study, while the other eight were found as a result of large-scale sequencing work performed by other groups. A highly specific phenotype was not recognised in these 16 cases. The most consistent phenotypic features seen in subjects with de novo variants in CNOT3 were hypotonia, relatively small stature, developmental delay, behavioural problems and intellectual disability. There is no easily recognisable facial phenotype, but some common dysmorphic features such as anteverted nares, thin upper lip and low set eyebrows were shared among some of the probands. Haploinsufficiency appears to be the most likely mechanism of action, with eight cases found to have protein-truncating variants. Of the other eight cases (all missense variants), three share an amino acid substitution at the same position which may therefore represent an important functional domain.
Project description:CTNNB1 gene mutation was firstly reported related to intellectual disability in 2012, to explore the clinical phenotype and genotype characteristics of CTNNB1 mutation, we collected and analyzed the clinical data of a child with a neurodevelopmental disorder caused by a mutation of CTNNB1. The child had dysmorphic features, microcephaly, hypotonia, polydactyly, retinal detachment, and neurodevelopmental disorder, with a de novo mutation of CTNNB1 c.1603C > T, p.R535X. The patient was diagnosed as Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) and was given rehabilitation training. After 4 months of rehabilitation training, she improved in gross motor function. We found that CTNNB1 mutation can cause neurodevelopmental disorder, which could be accompanied by retinal detachment and polydactyly. The retinal detachment had only been reported in two Asian patients, and we firstly reported the phenotype of polydactyly in the CTNNB1 mutation. This report not only helps to expand the clinical phenotype spectrum of the CTNNB1 gene mutation but also prompts a new insight into genetic diagnosis in patients with a neurodevelopmental disorder, retinal detachment, and polydactyly.