Ontology highlight
ABSTRACT: Aims
Remodelling of the left ventricular (LV) shape is one of the hallmarks of non-ischaemic dilated cardiomyopathy (DCM) and may contribute to ventricular arrhythmias and sudden cardiac death. We sought to investigate a novel three dimensional (3D) shape analysis approach to quantify LV remodelling for arrhythmia prediction in DCM.Methods and results
We created 3D LV shape models from end-diastolic cardiac magnetic resonance images of 156 patients with DCM and late gadolinium enhancement (LGE). Using the shape models, principle component analysis, and Cox-Lasso regression, we derived a prognostic LV arrhythmic shape (LVAS) score which identified patients who reached a composite arrhythmic endpoint of sudden cardiac death, aborted sudden cardiac death, and sustained ventricular tachycardia. We also extracted geometrical metrics to look for potential prognostic markers. During a follow-up period of up to 16 years (median 7.7, interquartile range: 3.9), 25 patients met the arrhythmic endpoint. The optimally prognostic LV shape for predicting the time-to arrhythmic event was a paraboloidal longitudinal profile, with a relatively wide base. The corresponding LVAS was associated with arrhythmic events in univariate Cox regression (hazard ratio = 2.0 per quartile; 95% confidence interval: 1.3-2.9), in univariate Cox regression with propensity score adjustment, and in three multivariate models; with LV ejection fraction, New York Heart Association Class III/IV (Model 1), implantable cardioverter-defibrillator receipt (Model 2), and cardiac resynchronization therapy (Model 3).Conclusion
Biomarkers of LV shape remodelling in DCM can help to identify the patients at greatest risk of lethal ventricular arrhythmias.
SUBMITTER: Balaban G
PROVIDER: S-EPMC9301973 | biostudies-literature |
REPOSITORIES: biostudies-literature