Project description:Whereas the detection of antiphospholipid autoantibodies (aPL) in COVID-19 is of increasing interest, their role is still unclear. We analyzed a large aPL panel in 157 patients with COVID-19 according to the disease severity. We also investigated a potential association between aPL and extracellular DNA (exDNA, n = 85) or circulating markers of neutrophil extracellular traps (NET) such as citrullinated histones H3 (CitH3, n = 49). A total of 157 sera of patients infected by SARS-CoV-2 were collected. A large aPL panel including lupus anticoagulant, anti-cardiolipin and anti-beta-2 glycoprotein I (IgG, IgM and IgA), anti-phosphatidylethanolamine IgA, anti-prothrombin (IgG and IgM) was retrospectively analyzed according to the disease severity. We found a total aPL prevalence of 54.8% with almost half of the cases having aCL IgG. Within an extended panel of aPL, only aCL IgG were associated with COVID-19 severity. Additionally, severe patients displayed higher CitH3 levels than mild patients. Interestingly, we highlighted a significant association between the levels of aCL IgG and exDNA only in aCL positive patients with severe disease. In conclusion, we showed a significant link between aPL, namely aCL IgG, and circulating exDNA in patients with severe form of COVID-19, that could exacerbate the thrombo-inflammatory state related to disease severity.
Project description:BackgroundCOVID-19 survivors report residual lung abnormalities after discharge from the hospital. The aim of this study was to identify biomarkers in serum and induced sputum samples from patients after hospitalization for COVID-19.MethodsPatients admitted to hospitals in Spain with laboratory-confirmed COVID-19 were recruited for this study. SARS-CoV-2-infected patients were divided into groups with mild/moderate and severe disease according to the severity of their symptoms during hospitalization. Levels of 92 biomarkers were measured in serum and induced sputum samples.ResultsA total of 108 patients (46.2% severe cases) were included in this study. The median number of days after the onset of symptoms was 104. A significant difference was observed in diffusing capacity for carbon monoxide (DLCO), an indicator of lung function, whereby DLCO <80% was significantly lower in severe cases (p <0.001). Differences in inflammatory biomarkers were observed between patients with mild/moderate and severe disease. For some biomarkers, correlations in serum and induced sputum levels were detected. Independent predictors of severe disease were DLCO <80% and the serum CDCP1 value.ConclusionsHigher levels of CDCP1 remain after hospital discharge and are associated with the severity of COVID-19. The possible prognostic implications warrant further investigation.
Project description:The clinical course of Coronavirus disease 2019 (COVID-19) displays a wide variability, ranging from completely asymptomatic forms to diseases associated with severe clinical outcomes. To reduce the incidence COVID-19 severe outcomes, innovative molecular biomarkers are needed to improve the stratification of patients at the highest risk of mortality and to better customize therapeutic strategies. MicroRNAs associated with COVID-19 outcomes could allow quantifying the risk of severe outcomes and developing models for predicting outcomes, thus helping to customize the most aggressive therapeutic strategies for each patient. Here, we analyzed the circulating miRNA profiles in a set of 12 hospitalized patients with severe COVID-19, with the aim to identify miRNAs associated with in-hospital mortality.
Project description:The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.
Project description:Early in the COVID-19 pandemic, type 2 diabetes (T2D) was marked as a risk-factor for severe disease. Inflammation is central to the aetiology of both conditions where immune responses influence disease course. Identifying at-risk groups through immuno-inflammatory signatures can direct personalised care and help develop potential targets for precision therapy. This observational study characterised immunophenotypic variation associated with COVID-19 severity in T2D. Broad-spectrum immunophenotyping quantified 15 leukocyte populations in circulation from a cohort of 45 hospitalised COVID-19 patients with and without T2D. Lymphocytopenia, of CD8+ lymphocytes, was associated with severe COVID-19 and intensive care admission in non-diabetic and T2D patients. A morphological anomaly of increased monocyte size and monocytopenia of classical monocytes were specifically associated with severe COVID-19 in patients with T2D requiring intensive care. Over-expression of inflammatory markers reminiscent of the type-1 interferon pathway underlaid the immunophenotype associated with T2D. These changes may contribute to severity of COVID-19 in T2D. These findings show characteristics of severe COVID-19 in T2D as well as provide evidence that type-1 interferons may be actionable targets for future studies.
Project description:There are conflicting data on whether variations of physiologic cortisol levels associated with cardiovascular risk. We hypothesize that prior discordant findings are related to problems associated with varying sample size, techniques for assessing cardiovascular risk and failure to adequately account for environmental factors. To address these issues, we utilized a large sample size, selected the Framingham risk score to compute cardiovascular risk and performed the study in a highly controlled setting. We had two main objectives: determine whether higher, yet physiologic, cortisol levels associated with increased cardiovascular risk and determine whether caveolin-1 (rs926198) risk allele carriers associated with increased cardiovascular risk. This was a cross-sectional study of 574 non-diabetic individuals who completed a common protocol. Data collection included fasting blood samples, blood pressure measurements and a 24-h urine-free cortisol collection. Five hundred seventeen of these participants also completed caveolin-1 genotyping. Subjects were classified as belonging to either the low-mode or high-mode urine-free cortisol groups, based on the bimodal distribution of urine-free cortisol. In multivariate analysis, Framingham risk score was statistically higher in the high-mode cortisol group (10.22 (mean) ± 0.43 (s.e.m.)) compared to the low-mode cortisol group (7.73 ± 0.34), P < 0.001. Framingham risk score was also statistically higher in the caveolin-1 risk allele carriers (8.91 ± 0.37) compared to caveolin-1 non-risk allele carriers (7.59 ± 0.48), P = 0.034. Overall, the estimated effect on Framingham risk score of carrying the caveolin-1 risk allele was 1.33 ± 0.61, P = 0.029. Both urinary cortisol and caveolin-1 risk allele status are independent predictors of Framingham risk score.
Project description:Evidence supports a role of complement anaphylatoxin C5a in the pathophysiology of COVID-19. However, information about the evolution and impact of C5a levels after hospital discharge is lacking. We analyzed the association between circulating C5a levels and the clinical evolution of hospitalized patients infected with SARS-CoV-2. Serum C5a levels were determined in 32 hospitalized and 17 non-hospitalized patients from Clinica Universidad de Navarra. One hundred and eighty eight serial samples were collected during the hospitalization stay and up to three months during the follow-up. Median C5a levels were 27.71 ng/ml (25th to 75th percentile: 19.35-34.96) for samples collected during hospitalization, versus 16.76 ng/ml (12.90-25.08) for samples collected during the follow-up (p<0.001). There was a negative correlation between serum C5a levels and the number of days from symptom onset (p<0.001). C5a levels also correlated with a previously validated clinical risk score (p<0.001), and was associated with the severity of the disease (p<0.001). An overall reduction of C5a levels was observed after hospital discharge. However, elevated C5a levels persisted in those patients with high COVID-19 severity (i.e. those with a longest stay in the hospital), even after months from hospital discharge (p=0.020). Moreover, high C5a levels appeared to be associated with the presence of long-term respiratory symptoms (p=0.004). In conclusion, serum C5a levels remain high in severe cases of COVID-19, and are associated with the presence of respiratory symptoms after hospital discharge. These results may suggest a role for C5a in the long-term effects of COVID-19 infection.