Project description:For efficient electrolysis of water for hydrogen generation or other value-added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core-branch array and binder-free electrode by growing Ni3S2 nanoflake branches on an atomic-layer-deposited (ALD) TiO2 skeleton. Through induced growth on the ALD-TiO2 backbone, cross-linked Ni3S2 nanoflake branches with exposed {[Formula: see text]} high-index facets are uniformly anchored to the preformed TiO2 core forming an integrated electrocatalyst. Such a core-branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed {[Formula: see text]} high-index facet in the Ni3S2 nanoflake. Accordingly, the TiO2@Ni3S2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220 mV at 10 mA cm-2) and hydrogen evolution reaction (112 mV at 10 mA cm-2), which are better than those of other Ni3S2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.
Project description:A facile in situ partial surface-oxidation strategy to integrate CoO domains with CoSe2 nanobelts on Ti mesh (denoted as CoO/CoSe2) via direct calcination of CoSe2-diethylenetriamine precursors is reported. The resulted self-supported CoO/CoSe2 exhibits an outstanding activity and stability in neutral media toward both hydrogen evolution reaction and oxygen evolution reaction.
Project description:Rational design of efficient bifunctional electrocatalysts is highly imperative but still a challenge for overall water splitting. Herein, we construct novel freestanding Mo-doped NiCoP nanosheet arrays by the hydrothermal and phosphation processes, serving as bifunctional electrocatalysts for overall water splitting. Notably, Mo doping could effectively modulate the electronic structure of NiCoP, leading to the increased electroactive site and improved intrinsic activity of each site. Furthermore, an electrochemical activation strategy is proposed to form Mo-doped (Ni,Co)OOH to fully boost the electrocatalytic activities for oxygen evolution reaction. Benefiting from the unique freestanding structure and Mo doping, Mo-doped NiCoP and (Ni,Co)OOH show the remarkable electrochemical performances, which are competitive among current researches. In addition, an overall water splitting device assembled by both electrodes only requires a cell voltage of 1.61 V to reach a current density of 10 mA cm-2. Therefore, this work opens up new avenues for designing nonprecious bifunctional electrocatalysts by Mo doping and in situ electrochemical activation.
Project description:Earth-abundant and efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly significant for renewable energy systems. However, the performance of existing electrocatalysts is usually restricted by the low electroic conductivity and the limited amount of exposed active sites. In this work, (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam have been prepared by a sulfuration of FeNi layered double hydroxide spheres grown on Ni foam. Benefiting from the unique tubular sphere architecture, the rich inner defects and the enhanced electron interactions between Fe, Ni and S, this electrocatalyst shows low overpotential of 48 mV for HER at 10 mA cm-2 in 1.0 mol L-1 KOH solution, which is one of the lowest value of non-previous electrocatalyts for HER in alkaline electrolyte. Furthermore, assembled this versatile electrode as an alkaline electrolyzer for overall water splitting, a current density of 10 mA cm-2 is achieved at a low cell voltage of 1.56 V, and reach up to 30 mA cm-2 only at an operating cell voltage of 1.65 V.
Project description:The construction of heterojunction has been widely accepted as a prospective strategy for the exploration of non-precious metal-based catalysts that possess high-performance to achieve electrochemical water splitting. Herein, we design and prepare a metal-organic framework derived N, P-doped-carbon-encapsulated Ni2P/FeP nanorod with heterojunction (Ni2P/FeP@NPC) for accelerating the water splitting and working stably at industrially relevant high current densities. Electrochemical results confirmed that Ni2P/FeP@NPC could both accelerate the hydrogen and oxygen evolution reactions. It could substantially expedite the overall water splitting (1.94 V for 100 mA cm-2) which is close to the performance of RuO2 and the Pt/C couple (1.92 V for 100 mA cm-2). In particular, the durability test exhibited that Ni2P/FeP@NPC delivers 500 mA cm-2 without decay after 200 h, demonstrating the great potential for large-scale applications. Furthermore, the density functional theory simulations demonstrated that the heterojunction interface could give rise to the redistribution of electrons, which could not only optimize the adsorption energy of H-containing intermediates to achieve the optimal ΔGH* in a hydrogen evolution reaction, but also reduce the ΔG value in the rate-determining step of an oxygen evolution reaction, thus improving the HER/OER performance.
Project description:Development of efficient electrocatalysts combining the features of low cost and high performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) still remains a critical challenge. Here, we proposed a facile strategy to construct in situ a novel hierarchical heterostructure composed of 0D-2D CoSe2/MoSe2 by the selenization of CoMoO4 nanosheets grafted on a carbon cloth (CC). In such integrated structure, CoSe2 nanoparticles dispersed well and tightly bonded with MoSe2 nanosheets, which can not only enhance kinetics due to the synergetic effects, thus promoting the electrocatalytic activity, but also effectively improve the structural stability. Benefiting from its unique architecture, the designed CoSe2/MoSe2 catalyst exhibits superior OER and HER performance. Specifically, a small overpotential of 280 mV is acquired at a current density of 10 mA·cm-2 for OER with a small Tafel slope of 86.8 mV·dec-1, and the overpotential is 90 mV at a current density of 10 mA·cm-2 for HER with a Tafel slope of 84.8 mV·dec-1 in 1 M KOH. Furthermore, the symmetrical electrolyzer assembled with the CoSe2/MoSe2 catalysts depicts a small cell voltage of 1.63 V at 10 mA·cm-2 toward overall water splitting.
Project description:Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (∼20 nm) are electrochemically transformed into ultra-small diameter (2-5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm(-2) water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts.
Project description:Noble-metal free, cost-effective, and highly stable catalysts with efficient activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have attracted tremendous research interest in recent years. Here, a flexible, self-standing hybrid film comprising a N-doped single-wall carbon nanotube (SWCNT) network on which are anchored Ni nanoparticles encapsulated by a monolayer of N-doped carbon (NCNi) is reported. The films are prepared by floating catalyst chemical vapor deposition followed by NH3 treatment. The material obtained at optimum conditions shows excellent bifunctional electrocatalytic activity in alkaline media with low overpotentials of 190 and 270 mV for HER and OER, respectively, to reach a current density of 10 mA cm-2. A current density of 10 mA cm-2 at 1.57 V is achieved when this freestanding and binder-free rod-shaped NCNi/SWCNT assembly is used as cathode and anode in 1 m KOH solution for overall water splitting, presenting one of the best values reported to date.
Project description:Designing and constructing bifunctional electrocatalysts is vital for water splitting. Particularly, the rational interface engineering can effectively modify the active sites and promote the electronic transfer, leading to the improved splitting efficiency. Herein, free-standing and defect-rich heterogeneous MoS2/NiS2 nanosheets for overall water splitting are designed. The abundant heterogeneous interfaces in MoS2/NiS2 can not only provide rich electroactive sites but also facilitate the electron transfer, which further cooperate synergistically toward electrocatalytic reactions. Consequently, the optimal MoS2/NiS2 nanosheets show the enhanced electrocatalytic performances as bifunctional electrocatalysts for overall water splitting. This study may open up a new route for rationally constructing heterogeneous interfaces to maximize their electrochemical performances, which may help to accelerate the development of nonprecious electrocatalysts for overall water splitting.