Ontology highlight
ABSTRACT: Background
Except for B7-CD28 family members, more novel immune checkpoints are being discovered. They are closely associated with tumor immune microenvironment and regulate the function of many immune cells. Various cancer therapeutic studies targeting these novel immune checkpoints are currently in full swing. However, studies concerning novel immune checkpoints phenotypes and clinical significance in lung adenocarcinoma (LUAD) are still limited.Methods
We enrolled 1883 LUAD cases from nine different cohorts. The samples from The Cancer Genome Atlas (TCGA) were used as a training set, whereas seven microarray data cohorts and an independent cohort with 102 qPCR data were used for validation. The immune profiles and potential mechanism of the system were also explored.Results
After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a novel immune checkpoints-based system (LTA, CD160, and CD40LG) were identified from the training set, which significantly stratified patients into high- and low-risk groups with different survivals. Furthermore, this system has been well validated in different clinical subgroups and multiple validation cohorts. It also acted as an independent prognostic factor for patients with LAUD in different cohorts. Further exploration suggested that high-risk patients exhibited distinctive immune cells infiltration and suffered an immunosuppressive state. Additionally, this system is closely linked to various classical immunotherapy biomarkers.Conclusion
we constructed a novel immune checkpoints-based system for LUAD, which predicts prognosis and immunotherapeutic implications. We believe that these findings will not only aid in clinical management but will also shed some light on screening appropriate patients for immunotherapy.
SUBMITTER: Sun N
PROVIDER: S-EPMC9310422 | biostudies-literature |
REPOSITORIES: biostudies-literature