Project description:Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 - 1000 grams CHO or ~8 - 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 - 60 grams of CHO/hour in a 6 - 8% CHO solution (8 - 16 fluid ounces) every 10 - 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 - 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 - 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g - 0.5 g PRO/kg/day) to CHO at a ratio of 3 - 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake.
Project description:Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Project description:Central hypoventilation syndromes (CHS) are rare diseases of central autonomic respiratory control associated with autonomous nervous dysfunction. Severe central hypoventilation is the hallmark and the most life-threatening feature. CHS is a group of not-fully defined disorders. Congenital CHS (CCHS) (ORPHA661) is clinically and genetically well-characterized, with the disease-causing gene identified in 2003. CCHS presents at birth in most cases, and associated with Hirschsprung's disease (ORPHA99803) and neural crest tumours in 20% and 5% of cases, respectively. The incidence of CCHS is estimated to be 1 of 200,000 live births in France, yet remains unknown for the rest of the world. In contrast, late-onset CHS includes a group of not yet fully delineated diseases. Overlap with CCHS is likely, as a subset of patients harbours PHOX2B mutations. Another subset of patients present with associated hypothalamic dysfunction. The number of these patients is unknown (less than 60 cases reported worldwide). Treatment of CHS is palliative using advanced techniques of ventilation support during lifetime. Research is ongoing to better understand physiopathological mechanisms and identify potential treatment pathways.The Fourth International Conference on Central Hypoventilation was organised in Warsaw, Poland, April 13-15, 2012, under the patronage of the European Agency for Health and Consumers and Public Health European Agency of European Community. The conference provided a state-of-the-art update of knowledge on all the genetic, molecular, cellular, and clinical aspects of these rare diseases.