A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance.
Ontology highlight
ABSTRACT: We report a general concurrent template strategy for precise synthesis of mesoporous Pt-/Pd-based intermetallic nanoparticles with desired morphology and ordered mesostructure. The concurrent template not only supplies a mesoporous metal seed for re-crystallization growth of atomically ordered intermetallic phases with unique atomic stoichiometry but also provides a nanoconfinement environment for nanocasting synthesis of mesoporous nanoparticles with ordered mesostructure and rhombic dodecahedral morphology under elevated temperature. Using the selective hydrogenation of 3-nitrophenylacetylene as a proof-of-concept catalytic reaction, mesoporous intermetallic PtSn nanoparticles exhibited remarkably controllable intermetallic phase-dependent catalytic selectivity and excellent catalytic stability. This work provides a very powerful strategy for precise preparation of ordered mesoporous intermetallic nanocrystals for application in selective catalysis and fuel cell electrocatalysis.
SUBMITTER: Lv H
PROVIDER: S-EPMC9311168 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA