Unknown

Dataset Information

0

Attention-augmented U-Net (AA-U-Net) for semantic segmentation


ABSTRACT: Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images, training data are currently scarce. Attention models, in particular the most recent self-attention methods, have shown to help gather contextual information within deep networks and benefit semantic segmentation tasks. The recent attention-augmented convolution model aims to capture long range interactions by concatenating self-attention and convolution feature maps. This work proposes a novel attention-augmented convolution U-Net (AA-U-Net) that enables a more accurate spatial aggregation of contextual information by integrating attention-augmented convolution in the bottleneck of an encoder–decoder segmentation architecture. A deep segmentation network (U-Net) with this attention mechanism significantly improves the performance of semantic segmentation tasks on challenging COVID-19 lesion segmentation. The validation experiments show that the performance gain of the attention-augmented U-Net comes from their ability to capture dynamic and precise (wider) attention context. The AA-U-Net achieves Dice scores of 72.3% and 61.4% for ground-glass opacity and consolidation lesions for COVID-19 segmentation and improves the accuracy by 4.2% points against a baseline U-Net and 3.09% points compared to a baseline U-Net with matched parameters.

Supplementary Information

The online version contains supplementary material available at 10.1007/s11760-022-02302-3.

SUBMITTER: Rajamani K 

PROVIDER: S-EPMC9311338 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8046243 | biostudies-literature
| S-EPMC9098486 | biostudies-literature
| S-EPMC10419745 | biostudies-literature
| S-EPMC9246608 | biostudies-literature
| S-EPMC9560845 | biostudies-literature
| S-EPMC10997063 | biostudies-literature
| S-EPMC8992955 | biostudies-literature
| S-EPMC9238000 | biostudies-literature
| S-EPMC10417575 | biostudies-literature
| S-EPMC8221064 | biostudies-literature