Ontology highlight
ABSTRACT: Simple Summary
There is a wide variety of insects in the suborder Heteroptera (true bugs), with various feeding habits and living habitats. Microbes that live inside insect guts play critical roles in aspects of host nutrition, physiology, and behavior. However, most studies have focused on herbivorous stink bugs of the infraorder Pentatomomorpha and the gut microbiota associated with the megadiverse heteropteran lineages, and the implications of ecological and diet variance have been less studied. Here, we investigated the gut microbial biodiversity of 30 species of true bugs representative of different ecological niches and diets. Proteobacteria and Firmicutes dominated all samples. True bugs that live in aquatic environments had a variety of bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs had distinct gut microbiomes compared to herbivorous species. In particular, assassin bugs of the family Reduviidae had a characteristic gut microbiota consisting mainly of Enterococcus and different species of Proteobacteria, implying a specific association between the gut bacteria and the host. These findings reveal that the environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. Abstract
Insects are generally associated with gut bacterial communities that benefit the hosts with respect to diet digestion, limiting resource supplementation, pathogen defense, and ecological niche expansion. Heteroptera (true bugs) represent one of the largest and most diverse insect lineages and comprise species consuming different diets and inhabiting various ecological niches, even including underwater. However, the bacterial symbiotic associations have been characterized for those basically restricted to herbivorous stink bugs of the infraorder Pentatomomorpha. The gut microbiota associated with the megadiverse heteropteran lineages and the implications of ecological and diet variance remain largely unknown. Here, we conducted a bacterial 16S rRNA amplicon sequencing of the gut microbiota across 30 species of true bugs representative of different ecological niches and diets. It was revealed that Proteobacteria and Firmicute were the predominant bacterial phyla. Environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. True bugs living in aquatic environments harbored multiple bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs possessed distinct gut microbiota compared to phytophagous species. Particularly, assassin bugs of the family Reduviidae possessed a characterized gut microbiota predominantly composed of one Enterococcus with different Proteobacteria, implying a specific association between the gut bacteria and host. Overall, our findings highlight the importance of the comprehensive surveillance of gut microbiota association with true bugs for understanding the molecular mechanisms underpinning insect–bacteria symbiosis.
SUBMITTER: Li G
PROVIDER: S-EPMC9312191 | biostudies-literature |
REPOSITORIES: biostudies-literature