Project description:First-degree relatives (FDRs) of familial pancreatic cancer (FPC) patients have increased risk of developing pancreatic ductal adenocarcinoma (PDAC). Investigating and understanding the genetic basis for PDAC susceptibility in FPC predisposed families may contribute toward future risk-assessment and management of high-risk individuals. Using a Danish cohort of 27 FPC families, we performed whole-genome sequencing of 61 FDRs of FPC patients focusing on rare genetic variants that may contribute to familial aggregation of PDAC. Statistical analysis was performed using the gnomAD database as external controls. Through analysis of heterozygous premature truncating variants (PTV), we identified cancer-related genes and cancer-driver genes harboring multiple germline mutations. Association analysis detected 20 significant genes with false discovery rate, q < 0.05 including: PALD1, LRP1B, COL4A2, CYLC2, ZFYVE9, BRD3, AHDC1, etc. Functional annotation showed that the significant genes were enriched by gene clusters encoding for extracellular matrix and associated proteins. PTV genes were over-represented by functions related to transport of small molecules, innate immune system, ion channel transport, and stimuli-sensing channels. In conclusion, FDRs of FPC patients carry rare germline variants related to cancer pathogenesis that may contribute to increased susceptibility to PDAC. The identified variants may potentially be useful for risk prediction of high-risk individuals in predisposed families.
Project description:UNLABELLED:Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genomes of 638 patients with familial pancreatic cancer and the tumor exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A, and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. SIGNIFICANCE:The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.
Project description:PurposeColorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases.MethodsExome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0-0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen.ResultsTwenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1.ConclusionWe identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm.
Project description:Developmental abnormalities of the gonadotropin-releasing hormone (GnRH) neuronal network result in a range of conditions from idiopathic hypogonadotropic hypogonadism to self-limited delayed puberty. We aimed to discover important underlying regulators of self-limited delayed puberty through interrogation of GnRH pathways. Whole exome sequencing (WES) data consisting of 193 individuals, from 100 families with self-limited delayed puberty, was analysed using a virtual panel of genes related to GnRH development and function (n = 12). Five rare predicted deleterious variants in Coiled-Coil Domain Containing 141 (CCDC141) were identified in 21 individuals from 6 families (6% of the tested cohort). Homology modeling predicted all five variants to be deleterious. CCDC141 mutant proteins showed atypical subcellular localization associated with abnormal distribution of acetylated tubulin, and expression of mutants resulted in a significantly delayed cell migration, demonstrated in transfected HEK293 cells. These data identify mutations in CCDC141 as a frequent finding in patients with self-limited delayed puberty. The mis-localization of acetylated tubulin and reduced cell migration seen with mutant CCDC141 suggests a role of the CCDC141-microtubule axis in GnRH neuronal migration, with heterozygous defects potentially impacting the timing of puberty.
Project description:Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.
Project description:Pulmonary atresia (PA) is a severe cyanotic congenital heart disease. Although some genetic mutations have been described to be associated with PA, the knowledge of pathogenesis is insufficient. The aim of this research was to use whole-exome sequencing (WES) to determine novel rare genetic variants in PA patients. We performed WES in 33 patients (27 patient-parent trios and 6 single probands) and 300 healthy control individuals. By applying an enhanced analytical framework to incorporate de novo and case-control rare variation, we identified 176 risk genes (100 de novo variants and 87 rare variants). Protein‒protein interaction (PPI) analysis and Genotype-Tissue Expression analysis revealed that 35 putative candidate genes had PPIs with known PA genes with high expression in the human heart. Expression quantitative trait loci analysis revealed that 27 genes that were identified as novel PA genes that could be affected by the surrounding single nucleotide polymorphism were screened. Furthermore, we screened rare damaging variants with a threshold of minor allele frequency at 0.5% in the ExAC_EAS and GnomAD_exome_EAS databases, and the deleteriousness was predicted by bioinformatics tools. For the first time, 18 rare variants in 11 new candidate genes have been identified that may play a role in the pathogenesis of PA. Our research provides new insights into the pathogenesis of PA and helps to identify the critical genes for PA.
Project description:We sequenced 11 germline exomes from five families with familial pancreatic cancer (FPC). One proband had a germline nonsense variant in ATM with somatic loss of the variant allele. Another proband had a nonsense variant in PALB2 with somatic loss of the variant allele. Both variants were absent in a relative with FPC. These findings question the causal mechanisms of ATM and PALB2 in these families and highlight challenges in identifying the causes of familial cancer syndromes using exome sequencing.
Project description:Rosacea is a chronic inflammatory skin disorder with high incidence rate. Although genetic predisposition to rosacea is suggested by existing evidence, the genetic basis remains largely unknown. Here we present the integrated results of whole genome sequencing (WGS) in 3 large rosacea families and whole exome sequencing (WES) in 49 additional validation families. We identify single rare deleterious variants of LRRC4, SH3PXD2A and SLC26A8 in large families, respectively. The relevance of SH3PXD2A, SLC26A8 and LRR family genes in rosacea predisposition is underscored by presence of additional variants in independent families. Gene ontology analysis suggests that these genes encode proteins taking part in neural synaptic processes and cell adhesion. In vitro functional analysis shows that mutations in LRRC4, SH3PXD2A and SLC26A8 induce the production of vasoactive neuropeptides in human neural cells. In a mouse model recapitulating a recurrent Lrrc4 mutation from human patients, we find rosacea-like skin inflammation, underpinned by excessive vasoactive intestinal peptide (VIP) release by peripheral neurons. These findings strongly support familial inheritance and neurogenic inflammation in rosacea development and provide mechanistic insight into the etiopathogenesis of the condition.
Project description:Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E-07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity.
Project description:Alström syndrome (AS, OMIM ID 203800) is a rare childhood multiorgan disorder, which is widely studied in non-Arab ethnic patients. The clinical and molecular basis of AS and the mode of disease inheritance in consanguineous Arab populations is not well investigated. Therefore, to identify the molecular basis of AS in familial forms, the present study performed whole exome sequencing of 5 AS patients belonging to 2 different Bedouin families from Saudi Arabia. The present study identified the AS causative rare biallelic mutations in ALMS gene:T376S in exon 5 and S909* in exon 8 for family A and an R2721* in exon 10 (R2721*) for family B. ALMS1 targeted genetic sequencing of healthy population controls and family members has confirmed its extremely rare frequency and autosomal recessive mode of inheritance. The truncating mutations S909* and R2721* could cause the loss of CC domains and ALMS motif on C-terminal end of the protein and creates unstable protein, which eventually undergoes intracellular degradation. The premature protein truncating mutations described in our study may eventually provide further insight into the functional domains of the ALMS1 protein and contribute to the understanding of the phenotypic spectrum of AS. Whole exome sequencing based molecular diagnosis is expected to rule out ambiguity surrounding clinical diagnosis of suspected AS cases.