Project description:Cardiac microvascular obstruction (MVO) associated with acute myocardial infarction (heart attack) is characterized by partial or complete elimination of perfusion in the myocardial microcirculation. A new catheter-based method (CoFI, Controlled Flow Infusion) has recently been developed to diagnose MVO in the catheterization laboratory during acute therapy of the heart attack. A porcine MVO model demonstrates that CoFI can accurately identify the increased hydraulic resistance of the affected microvascular bed. A benchtop microcirculation model was developed and tuned to reproduce in vivo MVO characteristics. The tuned benchtop model was then used to systematically study the effect of different levels of collateral flow. These experiments showed that measurements obtained in the catheter-based method were adversely affected such that collateral flow may be misinterpreted as MVO. Based on further analysis of the measured data, concepts to mitigate the adverse effects were formulated which allow discrimination between collateral flow and MVO.
Project description:Isolated cardiac tissue allows investigators to study mechanisms underlying normal and pathological conditions, which would otherwise be difficult or impossible to perform in vivo. Cultured neonatal rat ventricular cardiac myocytes (NRVM) are widely used to study signaling and growth mechanisms in the heart, primarily due to the versatility, economy, and convenience of this in vitro model. However, the lack of a well-defined longitudinal cellular axis greatly hampers the ability to measure contractile function in these cells, and therefore to associate signaling with mechanical function. In these methods, we demonstrate that this limitation can be overcome by using papillary muscles isolated from neonatal rat hearts. In the methods we describe procedures for isolation of right ventricular papillary muscles from 3-day-old neonatal rats and effects of mechanical and humoral stimuli on contraction and relaxation properties of these tissues.
Project description:Rationale: Microembolization during PCI for acute myocardial infarction can cause microvascular obstruction (MVO). MVO severely limits the success of reperfusion therapies, is associated with additional myonecrosis, and is linked to worse prognosis, including death. We have shown, both in in vitro and in vivo models, that ultrasound (US) and microbubble (MB) therapy (termed "sonoreperfusion" or "SRP") is a theranostic approach that relieves MVO and restores perfusion, but the underlying mechanisms remain to be established. Objective: In this study, we investigated the role of nitric oxide (NO) during SRP. Methods and results: We first demonstrated in plated cells that US-stimulated MB oscillations induced a 6-fold increase in endothelial nitric oxide synthase (eNOS) phosphorylation in vitro. We then monitored the kinetics of intramuscular NO and perfusion flow rate responses following 2-min of SRP therapy in the rat hindlimb muscle, with and without blockade of eNOS with LNAME. Following SRP, we found that starting at 6 minutes, intramuscular NO increased significantly over 30 min and was higher than baseline after 13 min. Concomitant contrast enhanced burst reperfusion imaging confirmed that there was a marked increase in perfusion flow rate at 6 and 10 min post SRP compared to baseline (>2.5 fold). The increases in intramuscular NO and perfusion rate were blunted with LNAME. Finally, we tested the hypothesis that NO plays a role in SRP by assessing reperfusion efficacy in a previously described rat hindlimb model of MVO during blockade of eNOS. After US treatment 1, microvascular blood volume was restored to baseline in the MB+US group, but remained low in the LNAME group. Perfusion rates increased in the MB+US group after US treatment 2 but not in the MB+US+LNAME group. Conclusions: These data strongly support that MB oscillations can activate the eNOS pathway leading to increased blood perfusion and that NO plays a significant role in SRP efficacy.
Project description:Sonoreperfusion therapy is being developed as an intervention for the treatment of microvascular obstruction. We investigated the reperfusion efficacy of two clinical ultrasound systems (a modified Philips EPIQ and a Philips Sonos 7500) in a rat hindlimb microvascular obstruction model. Four ultrasound conditions were tested using 20 min treatments: Sonos single frame, Sonos multi-frame, EPIQ low pressure and EPIQ high pressure. Contrast-enhanced perfusion imaging of the microvasculature was conducted at baseline and after treatment to calculate microvascular blood volume (MBV). EPIQ high pressure treatment resulted in significant recovery of MBV from microvascular obstruction, returning to baseline levels after treatment. EPIQ low pressure and Sonos multi-frame treatment resulted in significantly improved MBV after treatment but below baseline levels. Sonos single-frame and control groups showed no improvement post-treatment. This study demonstrates that the most effective sonoreperfusion therapy occurs at high acoustic pressure coupled with high acoustic intensity. Moreover, a clinically available ultrasound system is readily capable of delivering these effective therapeutic pulses.
Project description:Microvascular obstruction (MVO) is a recognised phenomenon following mechanical reperfusion in patients presenting with ST-segment elevation myocardial infarction (STEMI). Invasive and non-invasive modalities to detect and measure the extent of MVO vary in their accuracy, suggesting that this phenomenon may reflect a spectrum of pathophysiological changes at the level of coronary microcirculation. The importance of detecting MVO lies in the observation that its presence adds incremental risk to patients following STEMI treatment. This increased risk is associated with adverse cardiac remodelling seen on cardiac imaging, increased infarct size, and worse patient outcomes. This review provides an outline of the pathophysiology, clinical implications, and prognosis of MVO in STEMI. It describes historic and novel pharmacological and non-pharmacological therapies to address this phenomenon in conjunction with primary PCI.
Project description:BackgroundIntramyocardial haemorrhage (IMH) and microvascular obstruction (MVO) represent reperfusion injury after reperfused ST-elevation myocardial infarction (STEMI) with prognostic impact and "hypointense core" (HIC) appearance in T2-weighted images. We aimed to distinguish between IMH and MVO by using T2 (*)-weighted cardiovascular magnetic resonance imaging (CMR) and analysed influencing factors for IMH development.Methods and resultsA total of 151 patients with acute STEMI underwent CMR after primary angioplasty. T2-STIR sequences were used to identify HIC, late gadolinium enhancement to visualise MVO and T2 (*)-weighted sequences to detect IMH. IMH(+)/IMH(-) patients were compared considering infarct size, myocardial salvage, thrombolysis in myocardial infarction (TIMI) flow, reperfusion time, ventricular volumes, function and pre-interventional medication. Seventy-six patients (50%) were IMH(+), 82 (54%) demonstrated HIC and 100 (66%) MVO. IMH was detectable without HIC in 16 %, without MVO in 5% and HIC without MVO in 6%. Multivariable analyses revealed that IMH was associated with significant lower left ventricular ejection fraction and myocardial salvage index, larger left ventricular volume and infarct size. Patients with TIMI flow grade ≤1 before angioplasty demonstrated IMH significantly more often.ConclusionsIMH is associated with impaired left ventricular function and higher infarct size. T2 and HIC imaging showed moderate agreement for IMH detection. T2 (*) imaging might be the preferred CMR imaging method for comprehensive IMH assessment.Key pointsIntramyocardial haemorrhage is a common finding in patients with acute reperfused myocardial-infarction. T 2 (*) imaging should be the preferred CMR method for assessment of intramyocardial haemorrhage. Intramyocardial haemorrhage can be considered as an important influencing factor on patient's outcome.
Project description:Reperfusion may cause intramyocardial hemorrhage (IMH) by extravasation of erythrocytes through severely damaged endothelial walls. The purpose of the study was to evaluate the clinical significance of IMH in relation to infarct size, microvascular obstruction (MVO) and function in patients after primary percutaneous intervention. Forty-five patients underwent cardiovascular MR imaging (CMR) 1 week and 4 months after primary stenting for a first acute myocardial infarction. T2-weighted spin-echo imaging (T2W) was used to assess infarct related edema and IMH, and delayed enhancement (DE) was used to assess infarct size and MVO. Cine CMR was used to assess left ventricular volumes and function at baseline and at 4 months follow-up. In 22 (49%) patients, IMH was detected as areas of attenuated signal in the core of the high signal intensity region on T2W images. Patients with IMH had larger infarcts, higher left ventricular volumes and lower ejection fraction. Contrast-to-noise ratio (CNR) between hyperintense periphery and the hypo-intense core of the T2W ischemic area correlated to peak CKMB, total infarct size and MVO size. Using univariable analysis, CNR predicted ejection fraction at baseline (beta = -0.62, P = 0.003) and follow-up (beta = -0.84, P < 0.001). However, after multivariable analysis, baseline ejection fraction and presence of MVO were the only parameters that predicted functional changes at follow-up. IMH was found in the majority of patients with MVO after reperfused myocardial infarction. It was closely related to markers of infarct size, MVO and function, but did not have prognostic significance beyond MVO.