Project description:Systemic mastocytosis is a heterogeneous group of mast cell-driven diseases, diagnosed by bone marrow sampling. However, there are a limited number of available blood disease biomarkers. We performed a single-cell transcriptomics screen alongside a plasma proteomics screen to identify such potential biomarkers.
Project description:Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.
Project description:Extracellular vesicles (EVs) have been implicated in the development and progression of hematological malignancies. We thus examined serum samples from patients with systemic mastocytosis (SM) and found EVs with a mast cell signature including the presence of tryptase, Fc?RI, MRGX2, and KIT. The concentration of these EVs correlated with parameters of disease including levels of serum tryptase, IL-6, and alkaline phosphatase and physical findings including hepatosplenomegaly. Given reports that EVs from one cell type may influence another cell's behavior, we asked whether SM-EVs might affect hepatic stellate cells (HSCs), based on the abnormal liver pathology associated with mastocytosis. We found that KIT was transferred from SM-EVs into an HSC line eliciting proliferation, cytokine production, and differentiation, processes that have been associated with liver pathology. These effects were reduced by KIT inhibition or neutralization and recapitulated by enforced expression of KIT or constitutively active D816V-KIT, a gain-of-function variant associated with SM. Furthermore, HSCs in liver from mice injected with SM-EVs had increased expression of ?-SMA and human KIT, particularly around portal areas, compared with mice injected with EVs from normal individuals, suggesting that SM-EVs can also initiate HSC activation in vivo. Our data are thus consistent with the conclusion that SM-EVs have the potential to influence cells outside the hematological compartment and that therapeutic approaches for treatment of SM may be effective in part through inhibition of effects of EVs on target tissues, findings important both to understanding complex disease pathology and in developing interventional agents for the treatment of hematologic diseases.
Project description:In this first-in-literature case, we describe a patient with Systemic mastocytosis presenting with life-threatening cardiac tamponade associated with the presence of aberrant mast cells in the pericardium. Procedures involving surgical incisions through the pericardium in such cases can lead to uncontrolled mast cell degranulation leading to circulatory collapse.
Project description:Mast cells (MC) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MC occur in low abundance which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells of the body and established a robust protocol for human iPS cell differentiation towards MC. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MC that recapitulate SM disease features: increased number of MC, abnormal maturation kinetics and activated phenotype, CD2 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MC are a reliable and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.
Project description:Despite recent therapeutic advances, systemic mastocytosis (SM) remains an incurable disease due to limited complete remission (CR) rates even after novel therapies. To date, no study has evaluated the expression on SM bone marrow mast cells (BMMC) of large panel of cell surface suitable for antibody-targeted therapy. In this study, we analyzed the expression profile of six cell-surface proteins for which antibody-based therapies are available, on BMMC from 166 SM patients vs. 40 controls. Overall, variable patterns of expression for the markers evaluated were observed among SM BMMC. Thus, CD22, CD30, and CD123, while expressed on BMMC from patients within every subtype of SM, showed highly variable patterns with a significant fraction of negative cases among advanced SM (aggressive SM (ASM), ASM with an associated clonal non-MC lineage disease (ASM-AHN) and MC leukemia (MCL)), 36%, 46%, and 39%, respectively. In turn, CD25 and Fc?RI were found to be expressed in most cases (89% and 92%) in virtually all BMMC (median: 92% and 95%) from both indolent and advanced SM, but with lower/absent levels in a significant fraction of MC leukemia (MCL) and both in MCL and well-differentiated SM (WDSM) patients, respectively. In contrast, CD33 was the only marker expressed on all BMMC from every SM patient. Thus, CD33 emerges as the best potentially targetable cell-surface membrane marker in SM, particularly in advanced SM.
Project description:Stem cell factor-dependent KIT activation is an essential process for mast cell homeostasis. The two major splice variants of KIT differ by the presence or absence of four amino acids (GNNK) at the juxta-membrane region of the extracellular domain. We hypothesized that the expression pattern of these variants differs in systemic mastocytosis and that transcripts containing the KIT D816V mutation segregate preferentially to one GNNK variant. A quantitative real-time PCR assay to assess GNNK(-) and GNNK(+) transcripts from bone marrow mononuclear cells was developed. The GNNK(-)/GNNK(+) copy number ratio showed a trend toward a positive correlation with the percentage of neoplastic mast cell involvement, and KIT D816V containing transcripts displayed a significantly elevated GNNK(-)/GNNK(+) copy number ratio. Relative expression of only the GNNK(-) variant correlated with increasing percentage of neoplastic mast cell involvement. A mast cell transfection system revealed that the GNNK(-) isoform of wild type KIT was associated with increased granule formation, histamine content, and growth. When accompanying the KIT D816V mutation, the GNNK(-) isoform enhanced cytokine-free metabolism and moderately reduced sensitivity to the tyrosine kinase inhibitor, PKC412. These data suggest that neoplastic mast cells favor a GNNK(-) variant predominance, which in turn enhances the activating potential of the KIT D816V mutation and thus could influence therapeutic sensitivity in systemic mastocytosis.