Estimating and testing the influence of early diagnosis on cancer survival via point effects of diagnoses and treatments.
Ontology highlight
ABSTRACT: A cancer diagnosis is part of a complex stochastic process, which involves patient's characteristics, diagnosing methods, an initial assessment of cancer progression, treatments and a certain outcome of interest. To evaluate the performance of diagnoses, one needs not only a consistent estimation of the causal effect under a specified regime of diagnoses and treatments but also reliable confidence interval, P-value and hypothesis testing of the causal effect. In this article, we identify causal effects under various regimes of diagnoses and treatments by the point effects of diagnoses and treatments and thus are able to estimate and test these causal effects by estimating and testing point effects in the familiar framework of single-point causal inference. Specifically, using data from a Swedish prognosis study of stomach cancer, we estimate and test the causal effects on cancer survival under various regimes of diagnosing and treating hospitals including the optimal regime. We also estimate and test the modification of the causal effect by age. With its simple setting, one can readily extend the example to a large variety of settings in the area of cancer diagnosis: different personal characteristics such as family history, different diagnosing procedures such as multistage screening, and different cancer outcomes such as cancer progression.
SUBMITTER: Wang X
PROVIDER: S-EPMC9315175 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA