ABSTRACT: In this study, two nitrile-functionalized spiro-twisted benzoxazine monomers, namely 2,2'-((6,6,6',6'-tetramethyl-6,6',7,7'-tetrahydro-2H,2'H-8,8'-spirobi[indeno[5,6-e][1,3]oxazin]-3,3'(4H,4'H)-diyl)bis(4,1-phenylene))diacetonitrile (TSBZBC) and 4,4'-(6,6,6',6'-tetramethyl-6,6',7,7'-tetrahydro-2H,2'H-8,8'-spirobi[indeno[5,6-e][1,3]oxazin]-3,3'(4H,4'H)-diyl)dibenzonitrile (TSBZBN) were successfully developed as cross-linkable precursors. In addition, the incorporation of the nitrile group by covalent bonding onto the crosslinked spiro-twisted molecular chains improve the miscibility of SPE membranes with lithium salts while maintaining good mechanical properties. Owing to the presence of a high fractional free volume of spiro-twisted matrix, the -CN groups would have more space for rotation and vibration to assist lithium migration, especially for the benzyl cyanide-containing SPE. When combined with poly (ethylene oxide) (PEO) electrolytes, a new type of CN-containing semi-interpenetrating polymer networks for solid polymer electrolytes (SPEs) were prepared. The PEO-TSBZBC and PEO-TSBZBN composite SPEs (with 20 wt% crosslinked structure in the polymer) are denoted as the BC20 and BN20, respectively. The BC20 sample exhibited an ionic conductivity (σ) of 3.23 × 10-4 S cm-1 at 80 °C and a Li+ ion transference number of 0.187. The LiFePO4 (LFP)|BC20|Li sample exhibited a satisfactory charge-discharge capacity of 163.6 mAh g-1 at 0.1 C (with approximately 100% coulombic efficiency). Furthermore, the Li|BC20|Li cell was more stable during the Li plating/stripping process than the Li|BN20|Li and Li|PEO|Li samples. The Li|BC20|Li symmetric cell could be cycled continuously for more than 2700 h without short-circuiting. In addition, the specific capacity of the LFP|BC20|Li cell retained 87% of the original value after 50 cycles.