Ontology highlight
ABSTRACT: Background
Lactobacillus paracasei CCFM1223, a probiotic previously isolated from the healthy people's intestine, exerts the beneficial influence of preventing the development of inflammation.Methods
The aim of this research was to explore the beneficial effects of L. paracasei CCFM1223 to prevent lipopolysaccharide (LPS)-induced acute liver injury (ALI) and elaborate on its hepatoprotective mechanisms.Results
L. paracasei CCFM1223 pretreatment remarkably decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mice with LPS treatment and remarkably recovered LPS-induced the changes in inflammatory cytokines (tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interleukin (IL)-1β, IL-6, IL-17, IL-10, and LPS) and antioxidative enzymes activities (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)). Metagenomic analysis showed that L. paracasei CCFM1223 pretreatment remarkably increased the relative abundance of Catabacter compared with the LPS group but remarkably reduced the relative abundance of [Eubacterium] xylanophilumgroup, ASF356, LachnospiraceaeNK4A136group, and Lachnoclostridium, which is closely associated with the inflammation cytokines and antioxidative enzymes. Furthermore, L. paracasei CCFM1223 pretreatment remarkably increased the colonic, serum, and hepatic IL-22 levels in ALI mice. In addition, L. paracasei CCFM1223 pretreatment remarkably down-regulated the hepatic Tlr4 and Nf-kβ transcriptions and significantly up-regulated the hepatic Tlr9, Tak1, Iκ-Bα, and Nrf2 transcriptions in ALI mice.Conclusions
L. paracasei CCFM1223 has a hepatoprotective function in ameliorating LPS-induced ALI by regulating the "gut-liver" axis.
SUBMITTER: Guo W
PROVIDER: S-EPMC9319883 | biostudies-literature |
REPOSITORIES: biostudies-literature