Buckling suppression of a thin-walled Miura-origami patterned tube.
Ontology highlight
ABSTRACT: In order to improve energy absorption capacity of tubes under axial compression, this work introduces an octagon tube patterned by curved Miura origami pattern and aims at suppressing global buckling of the tube via an appropriate fold line scheme. By categorizing the fold lines of the tube into two types (hinge-like lines and continuous lines) and allocating them to different positions, four arrangement schemes of the lines are developed. Through numerical comparison in force-displacement curve, stress distribution and lateral deformation capacity among four 3-level patterned tubes under different schemes, Scheme 4 (inclined valley lines as hinge-like lines and the others as continuous lines) is found to outperform the others in suppressing global buckling by reducing the magnitude of lateral deformation by up to 59.9% and by delaying the occurrence of global buckling by up to 35.9% compared with the other schemes. To step further, the scheme is applied in a long tube and geometrically different tubes are compared. The results prove that the scheme is potentially an effective way to alleviate buckling instability of a long tube when appropriately designed.
SUBMITTER: Liu Y
PROVIDER: S-EPMC9321408 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA