Ontology highlight
ABSTRACT: Simple Summary
Immunotherapy targeting immune checkpoint pathways have recently attracted great attention in cancer treatment, but better strategies are needed to identify patients likely to benefit from it. The major histocompatibility complex (MHC) class I expression in cancer cells greatly influences the outcome of T cell-mediated immunotherapy. Here, we determined the prevalent HLA class I allelic variants in a sarcoma population. We characterized patient CD8+ T-cells and demonstrated low cytolysis to autologous tumor cells. Moreover, we used a co-culture model of autologous T-cells and PD-L1-deficient or positive biopsies of rare sarcomas to determine whether HLA-I influences tumor survival. Abstract
The major histocompatibility complex (MHC) class I expression in cancer cells has a crucial impact on the outcome of T cell-mediated cancer immunotherapy. We now determined the HLA class I allelic variants and their expression in PD-L1-deficient and positive rare sarcoma tissues. Tumor tissues were HLA-I classified based on HLA-A and -B alleles, and for class II, the HLA-DR-B by Taqman genomic PCRs. The HLA-A24*:10-B73*:01 haplotype was the most common. A general down-regulation or deletion of HLA-B mRNA and HLA-A was observed, compared to HLA-DR-B. HLA-I was almost too low to be detectable by immunohistochemistry and 32% of grade III cases were positive to PD-L1. Functional cytotoxic assays co-culturing patient biopsies with autologous T cells were used to assess their ability to kill matched tumor cells. These results establish that deletion of HLA-I loci together with their down-regulation in individual patient restrict the autologous lymphocyte cytotoxic activity, even in the presence of the immune checkpoint blocking antibody, Nivolumab. Additionally, the proposed cytotoxic test suggests a strategy to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.
SUBMITTER: Mosca L
PROVIDER: S-EPMC9322060 | biostudies-literature |
REPOSITORIES: biostudies-literature